IDEAS home Printed from https://ideas.repec.org/p/qld/uqcepa/50.html
   My bibliography  Save this paper

Estimating State-allocable Production Technologies When there are two States of Nature and State Allocations of Inputs are Unobserved

Author

Abstract

Chambers and Quiggin (2000) have used state-contingent production theory to establish important results concerning economic behaviour in the presence of uncertainty, including problems of consumer choice, the theory of the firm, and principal-agent relationships. Empirical application of the state contingent approach has proved difficult, not least because most of the data needed for applying standard econometric methods are lost in unrealized states of the world. O’Donnell and Griffiths (2006) show how a restrictive type of state-contingent technology can be estimated in a finite mixtures framework. This paper shows how Bayesian methodology can be used to estimate more flexible types of state-contingent technologies.

Suggested Citation

  • C.J. O’Donnell & S.Shankar, 2010. "Estimating State-allocable Production Technologies When there are two States of Nature and State Allocations of Inputs are Unobserved," CEPA Working Papers Series WP042010, School of Economics, University of Queensland, Australia.
  • Handle: RePEc:qld:uqcepa:50
    as

    Download full text from publisher

    File URL: https://economics.uq.edu.au/files/5247/WP042010.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. C. J. O'Donnell & W. E. Griffiths, 2006. "Estimating State-Contingent Production Frontiers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 249-266.
    2. Chambers,Robert G. & Quiggin,John, 2000. "Uncertainty, Production, Choice, and Agency," Cambridge Books, Cambridge University Press, number 9780521785235.
    3. Christopher O’Donnell & Robert Chambers & John Quiggin, 2010. "Efficiency analysis in the presence of uncertainty," Journal of Productivity Analysis, Springer, vol. 33(1), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sriram Shankar & John Quiggin, 2013. "Production under uncertainty: a simulation study," Journal of Productivity Analysis, Springer, vol. 39(3), pages 207-215, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sriram Shankar & John Quiggin, 2013. "Production under uncertainty: a simulation study," Journal of Productivity Analysis, Springer, vol. 39(3), pages 207-215, June.
    2. Adamson, David & Mallawaarachchi, Thilak & Quiggin, John C., 2007. "Water use and salinity in the Murray–Darling Basin: A state-contingent model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(3), pages 1-19.
    3. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    4. Serra, Teresa & Chambers, Robert G. & Oude Lansink, Alfons, 2014. "Measuring technical and environmental efficiency in a state-contingent technology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 706-717.
    5. Taylan G. Topcu & Konstantinos Triantis, 2022. "An ex-ante DEA method for representing contextual uncertainties and stakeholder risk preferences," Annals of Operations Research, Springer, vol. 309(1), pages 395-423, February.
    6. Céline Nauges & Christopher J. O'Donnell & John Quiggin, 2011. "Uncertainty and technical efficiency in Finnish agriculture: a state-contingent approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 38(4), pages 449-467, October.
    7. John Quiggin & Robert G. Chambers, 2006. "The state-contingent approach to production under uncertainty ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(2), pages 153-169, June.
    8. Pedro Macedo & Elvira Silva & Manuel Scotto, 2014. "Technical efficiency with state-contingent production frontiers using maximum entropy estimators," Journal of Productivity Analysis, Springer, vol. 41(1), pages 131-140, February.
    9. Theodoros Skevas & Teresa Serra, 2016. "The role of pest pressure in technical and environmental inefficiency analysis of Dutch arable farms: an event-specific data envelopment approach," Journal of Productivity Analysis, Springer, vol. 46(2), pages 139-153, December.
    10. Yin, Pengzhen & Sun, Jiasen & Chu, Junfei & Liang, Liang, 2016. "Evaluating the environmental efficiency of a two-stage system with undesired outputs by a DEA approach: An interest preference perspectiveAuthor-Name: Wu, Jie," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1047-1062.
    11. Serra, Teresa & Zilberman, David & Gil, Jose Maria, 2008. "Farms' technical inefficiencies in the presence of government programs," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(1), pages 1-20.
    12. Robert Chambers & Teresa Serra & Spiro Stefanou, 2015. "Using ex ante output elicitation to model state-contingent technologies," Journal of Productivity Analysis, Springer, vol. 43(1), pages 75-83, February.
    13. Vaneet Bhatia & Sankarshan Basu & Subrata Kumar Mitra & Pradyumna Dash, 2018. "A review of bank efficiency and productivity," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 557-600, November.
    14. Macedo, Pedro & Scotto, Manuel, 2014. "Cross-entropy estimation in technical efficiency analysis," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 124-130.
    15. Bouali Guesmi & Teresa Serra & Allen Featherstone, 2015. "Technical efficiency of Kansas arable crop farms: a local maximum likelihood approach," Agricultural Economics, International Association of Agricultural Economists, vol. 46(6), pages 703-713, November.
    16. Adamson, David & Mallawaarachchi, Thilak & Quiggin, John, 2004. "Modelling basin level allocation of water in the Murray Darling Basin in a world of uncertainty," Risk and Sustainable Management Group Working Papers 149844, University of Queensland, School of Economics.
    17. Huettel, Silke & Narayana, Rashmi & Odening, Martin, 2011. "Measuring dynamic efficiency under uncertainty," Structural Change in Agriculture/Strukturwandel im Agrarsektor (SiAg) Working Papers 129062, Humboldt University Berlin, Department of Agricultural Economics.
    18. Lien, Gudbrand & Kumbhakar, Subal C. & Mishra, Ashok K. & Hardaker, J. Brian, 2022. "Does risk management affect productivity of organic rice farmers in India? Evidence from a semiparametric production model," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1392-1402.
    19. Mullen, John & Keogh, Mick, 2013. "The Future Productivity and Competitiveness Challenge for Australian Agriculture," 2013 Conference (57th), February 5-8, 2013, Sydney, Australia 152170, Australian Agricultural and Resource Economics Society.
    20. Quiggin, John & Chambers, Robert G., 2005. "The state-contingent approach to production and uncertainty," Risk and Sustainable Management Group Working Papers 151168, University of Queensland, School of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qld:uqcepa:50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SOE IT (email available below). General contact details of provider: https://edirc.repec.org/data/decuqau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.