IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202143.html
   My bibliography  Save this paper

Out-of-Sample Predictability of Gold Market Volatility: The Role of US Nonfarm Payroll

Author

Listed:
  • Afees A. Salisu

    (Centre for Econometric and Allied Research, University of Ibadan, Ibadan, Nigeria)

  • Elie Bouri

    (Adnan Kassar School of Business, Lebanese American University, Beirut, Lebanon)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa)

Abstract

In this study, we make a three-fold contribution to the literature on gold market analysis. First, we provide evidence for the predictive value of US Nonfarm Payroll (USNP) in the out-of-sample forecast of gold market volatility. Second, we extend our analysis to other precious metals and the US stock market index for robustness purposes. Third, we utilize mixed data frequencies based on the availability of data, thus, circumventing any bias or information loss due to the use of monthly (low frequency) USNP data and daily (high frequency) gold price data. The results show that the USNP, which reflects gain/loss in US non-farm jobs, is negatively related to gold return volatility implying that deterioration (improvement) in the economy due to job losses (gains) raises (lowers) the gold market volatility as its trading improves (deteriorates) while the reverse is the case for US stocks. The out-of-sample predictive value of USNP in the return volatility of gold is also established as the model which includes the former offers better out-of-sample forecast gains than the benchmark model which ignores it. Additional analyses involving other precious metals, namely palladium, platinum, rhodium, and silver, show the same direction of relationship as gold, albeit with higher forecast gains for silver than the others. Our findings have useful implications for financial analysts and investors.

Suggested Citation

  • Afees A. Salisu & Elie Bouri & Rangan Gupta, 2021. "Out-of-Sample Predictability of Gold Market Volatility: The Role of US Nonfarm Payroll," Working Papers 202143, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202143
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Raymond L. Aor & Afees A. Salisu & Isah J. Okpe, 2021. "A Comparative Assessment of the Global Effects of US Monetary and Fiscal Policy Uncertainty Shocks," Advances in Decision Sciences, Asia University, Taiwan, vol. 25(4), pages 89-114, December.
    2. Mensi, Walid & Beljid, Makram & Boubaker, Adel & Managi, Shunsuke, 2013. "Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold," Economic Modelling, Elsevier, vol. 32(C), pages 15-22.
    3. Salisu, Afees A. & Gupta, Rangan & Bouri, Elie & Ji, Qiang, 2020. "The role of global economic conditions in forecasting gold market volatility: Evidence from a GARCH-MIDAS approach," Research in International Business and Finance, Elsevier, vol. 54(C).
    4. Hardik A. Marfatia & Rangan Gupta & Keagile Lesame, 2021. "Dynamic Impact of Unconventional Monetary Policy on International REITs," JRFM, MDPI, vol. 14(9), pages 1-19, September.
    5. Sensoy, Ahmet, 2013. "Dynamic relationship between precious metals," Resources Policy, Elsevier, vol. 38(4), pages 504-511.
    6. Jonathan Andrew Batten & Brian M. Lucey, 2010. "Volatility in the gold futures market," Applied Economics Letters, Taylor & Francis Journals, vol. 17(2), pages 187-190, January.
    7. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    8. Ederington, Louis & Guan, Wei & Yang, Lisa (Zongfei), 2019. "The impact of the U.S. employment report on exchange rates," Journal of International Money and Finance, Elsevier, vol. 90(C), pages 257-267.
    9. Abosedra, Salah & Arayssi, Mahmoud & Ben Sita, Bernard & Mutshinda, Crispin, 2020. "Exploring GDP growth volatility spillovers across countries," Economic Modelling, Elsevier, vol. 89(C), pages 577-589.
    10. Kose,Ayhan & Lakatos,Csilla & Ohnsorge,Franziska Lieselotte & Stocker,Marc, 2017. "The global role of the U.S. economy: linkages, policies and spillovers," Policy Research Working Paper Series 7962, The World Bank.
    11. Stephane Dees & Arthur Saint-Guilhem, 2011. "The role of the United States in the global economy and its evolution over time," Empirical Economics, Springer, vol. 41(3), pages 573-591, December.
    12. Caruso, Alberto, 2019. "Macroeconomic news and market reaction: Surprise indexes meet nowcasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1725-1734.
    13. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2012. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(2), pages 207-218.
    14. Brian M. Lucey & Sile Li, 2015. "What precious metals act as safe havens, and when? Some US evidence," Applied Economics Letters, Taylor & Francis Journals, vol. 22(1), pages 35-45, January.
    15. Naeem, Muhammad & Tiwari, Aviral Kumar & Mubashra, Sana & Shahbaz, Muhammad, 2019. "Modeling volatility of precious metals markets by using regime-switching GARCH models," Resources Policy, Elsevier, vol. 64(C).
    16. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    17. Elder, John & Miao, Hong & Ramchander, Sanjay, 2012. "Impact of macroeconomic news on metal futures," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 51-65.
    18. Salisu, Afees A. & Gupta, Rangan & Pierdzioch, Christian, 2022. "Predictability of tail risks of Canada and the U.S. Over a Century: The role of spillovers and oil tail Risks☆," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    19. Fang, Libing & Yu, Honghai & Xiao, Wen, 2018. "Forecasting gold futures market volatility using macroeconomic variables in the United States," Economic Modelling, Elsevier, vol. 72(C), pages 249-259.
    20. Kishor, N. Kundan & Marfatia, Hardik A., 2013. "The time-varying response of foreign stock markets to U.S. monetary policy surprises: Evidence from the Federal funds futures market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 24(C), pages 1-24.
    21. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    22. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    23. Jun Cai & Yan‐Leung Cheung & Michael C. S. Wong, 2001. "What moves the gold market?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(3), pages 257-278, March.
    24. Christie-David, Rohan & Chaudhry, Mukesh & Koch, Timothy W., 2000. "Do macroeconomics news releases affect gold and silver prices?," Journal of Economics and Business, Elsevier, vol. 52(5), pages 405-421.
    25. Tarun Bhatia, 2020. "Predicting Non Farm Employment," Papers 2009.14282, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thanoj K. Muddana & Komal S.R. Bhimireddy & Anandamayee Majumdar & Rangan Gupta, 2024. "Forecasting Gold Returns Volatility Over 1258-2023: The Role of Moments," Working Papers 202421, University of Pretoria, Department of Economics.
    2. Ayinde, Taofeek O. & Olaniran, Abeeb O. & Abolade, Onomeabure C. & Ogbonna, Ahamuefula Ephraim, 2023. "Technology shocks - Gold market connection: Is the effect episodic to business cycle behaviour?," Resources Policy, Elsevier, vol. 84(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Libing & Yu, Honghai & Xiao, Wen, 2018. "Forecasting gold futures market volatility using macroeconomic variables in the United States," Economic Modelling, Elsevier, vol. 72(C), pages 249-259.
    2. Salisu, Afees A. & Gupta, Rangan & Bouri, Elie, 2023. "Testing the forecasting power of global economic conditions for the volatility of international REITs using a GARCH-MIDAS approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 303-314.
    3. Dinh, Theu & Goutte, Stéphane & Nguyen, Duc Khuong & Walther, Thomas, 2022. "Economic drivers of volatility and correlation in precious metal markets," Journal of Commodity Markets, Elsevier, vol. 28(C).
    4. Luu Duc Huynh, Toan, 2020. "The effect of uncertainty on the precious metals market: New insights from Transfer Entropy and Neural Network VAR," Resources Policy, Elsevier, vol. 66(C).
    5. Balcilar, Mehmet & Ozdemir, Zeynel Abidin, 2019. "The volatility effect on precious metals price returns in a stochastic volatility in mean model with time-varying parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    6. Troster, Victor & Bouri, Elie & Roubaud, David, 2019. "A quantile regression analysis of flights-to-safety with implied volatilities," Resources Policy, Elsevier, vol. 62(C), pages 482-495.
    7. Rana, Hafiz Muhammad Usman & O'Connor, Fergal, 2023. "Domestic macroeconomic determinants of precious metals prices in developed and emerging economies: An international analysis of the long and short run," International Review of Financial Analysis, Elsevier, vol. 89(C).
    8. Vigne, Samuel A. & Lucey, Brian M. & O’Connor, Fergal A. & Yarovaya, Larisa, 2017. "The financial economics of white precious metals — A survey," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 292-308.
    9. Štefan Lyócsa & Peter Molnár, 2016. "Volatility forecasting of strategically linked commodity ETFs: gold-silver," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1809-1822, December.
    10. Charlot, Philippe & Marimoutou, Vêlayoudom, 2014. "On the relationship between the prices of oil and the precious metals: Revisiting with a multivariate regime-switching decision tree," Energy Economics, Elsevier, vol. 44(C), pages 456-467.
    11. Ayinde, Taofeek O. & Olaniran, Abeeb O. & Abolade, Onomeabure C. & Ogbonna, Ahamuefula Ephraim, 2023. "Technology shocks - Gold market connection: Is the effect episodic to business cycle behaviour?," Resources Policy, Elsevier, vol. 84(C).
    12. Ye, Wuyi & Guo, Ranran & Deschamps, Bruno & Jiang, Ying & Liu, Xiaoquan, 2021. "Macroeconomic forecasts and commodity futures volatility," Economic Modelling, Elsevier, vol. 94(C), pages 981-994.
    13. Semeyutin, Artur & Downing, Gareth, 2022. "Co-jumps in the U.S. interest rates and precious metals markets and their implications for investors," International Review of Financial Analysis, Elsevier, vol. 81(C).
    14. Khaskheli, Asadullah & Zhang, Hongyu & Raza, Syed Ali & Khan, Komal Akram, 2022. "Assessing the influence of news indicator on volatility of precious metals prices through GARCH-MIDAS model: A comparative study of pre and during COVID-19 period," Resources Policy, Elsevier, vol. 79(C).
    15. Salisu, Afees A. & Ogbonna, Ahamuefula E. & Lasisi, Lukman & Olaniran, Abeeb, 2022. "Geopolitical risk and stock market volatility in emerging markets: A GARCH – MIDAS approach," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    16. Adediran, Idris A. & Swaray, Raymond, 2023. "Carbon trading amidst global uncertainty: The role of policy and geopolitical uncertainty," Economic Modelling, Elsevier, vol. 123(C).
    17. Rangan Gupta & Sayar Karmakar & Christian Pierdzioch, 2024. "Safe Havens, Machine Learning, and the Sources of Geopolitical Risk: A Forecasting Analysis Using Over a Century of Data," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 487-513, July.
    18. Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
    19. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    20. Amélie Charles & Olivier Darné & Jae H. Kim, 2014. "Precious metals shine? A market efficiency perspective," Working Papers hal-01010516, HAL.

    More about this item

    Keywords

    Gold market volatility; US Nonfarm Payroll; Out-of-sample predictability; GARCH-MIDAS;
    All these keywords.

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications
    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure
    • J23 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Demand

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.