IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202101.html
   My bibliography  Save this paper

OPEC News and Exchange Rate Forecasting Using Dynamic Bayesian Learning

Author

Listed:
  • Xin Sheng

    (Lord Ashcroft International Business School, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Pretoria, 0002, South Africa)

  • Afees A. Salisu

    (Centre for Econometric & Allied Research, University of Ibadan, Ibadan, Nigeria)

  • Elie Bouri

    (Adnan Kassar School of Business, Lebanese American University, Beirut, Lebanon)

Abstract

We consider whether a newspaper article count index related to the Organization of the Petroleum Exporting Countries (OPEC), which rises in response to important OPEC meetings and events connected with OPEC production levels, contains predictive power for the foreign exchange rates of G10 countries. The applied Bayesian inference methodology synthesizes a wide array of established approaches to modelling exchange rate dynamics, whereby various vector-autoregressive models are considered. Monthly data from 1996:01 to 2020:08 (given an in-sample of 1986:02 to 1995:12), shows that incorporating the OPEC news-related index into the proposed methodology leads to statistical gains in out-of-sample forecasts.

Suggested Citation

  • Xin Sheng & Rangan Gupta & Afees A. Salisu & Elie Bouri, 2021. "OPEC News and Exchange Rate Forecasting Using Dynamic Bayesian Learning," Working Papers 202101, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202101
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Elie Bouri & Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2020. "Infectious Diseases, Market Uncertainty and Oil Market Volatility," Energies, MDPI, vol. 13(16), pages 1-8, August.
    2. Plante, Michael, 2019. "OPEC in the news," Energy Economics, Elsevier, vol. 80(C), pages 163-172.
    3. Gupta, Rangan & Yoon, Seong-Min, 2018. "OPEC news and predictability of oil futures returns and volatility: Evidence from a nonparametric causality-in-quantiles approach," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 206-214.
    4. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    5. Carriero, A. & Kapetanios, G. & Marcellino, M., 2009. "Forecasting exchange rates with a large Bayesian VAR," International Journal of Forecasting, Elsevier, vol. 25(2), pages 400-417.
    6. Joscha Beckmann & Gary Koop & Dimitris Korobilis & Rainer Alexander Schüssler, 2020. "Exchange rate predictability and dynamic Bayesian learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 410-421, June.
    7. Gianluca Benigno & Pierpaolo Benigno & Salvatore Nisticò, 2012. "Risk, Monetary Policy, and the Exchange Rate," NBER Macroeconomics Annual, University of Chicago Press, vol. 26(1), pages 247-309.
    8. James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR ‘Fan’ Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
    9. Mensi, Walid & Hammoudeh, Shawkat & Yoon, Seong-Min, 2014. "How do OPEC news and structural breaks impact returns and volatility in crude oil markets? Further evidence from a long memory process," Energy Economics, Elsevier, vol. 42(C), pages 343-354.
    10. Narayan, Paresh Kumar, 2019. "Can stale oil price news predict stock returns?," Energy Economics, Elsevier, vol. 83(C), pages 430-444.
    11. Narayan, Paresh Kumar & Sharma, Susan Sunila & Phan, Dinh Hoang Bach & Liu, Guangqiang, 2020. "Predicting exchange rate returns," Emerging Markets Review, Elsevier, vol. 42(C).
    12. Lizardo, Radhamés A. & Mollick, André V., 2010. "Oil price fluctuations and U.S. dollar exchange rates," Energy Economics, Elsevier, vol. 32(2), pages 399-408, March.
    13. Christina Christou & Rangan Gupta & Christis Hassapis & Tahir Suleman, 2018. "The role of economic uncertainty in forecasting exchange rate returns and realized volatility: Evidence from quantile predictive regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(7), pages 705-719, November.
    14. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    15. Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," National Institute of Economic and Social Research (NIESR) Discussion Papers 253, National Institute of Economic and Social Research.
    16. Salisu, Afees A. & Adekunle, Wasiu & Alimi, Wasiu A. & Emmanuel, Zachariah, 2019. "Predicting exchange rate with commodity prices: New evidence from Westerlund and Narayan (2015) estimator with structural breaks and asymmetries," Resources Policy, Elsevier, vol. 62(C), pages 33-56.
    17. Salisu, Afees A. & Ndako, Umar B., 2018. "Modelling stock price–exchange rate nexus in OECD countries: A new perspective," Economic Modelling, Elsevier, vol. 74(C), pages 105-123.
    18. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    19. Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," National Institute of Economic and Social Research (NIESR) Discussion Papers 253, National Institute of Economic and Social Research.
    20. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    21. Salisu, Afees A. & Vo, Xuan Vinh, 2020. "Predicting stock returns in the presence of COVID-19 pandemic: The role of health news," International Review of Financial Analysis, Elsevier, vol. 71(C).
    22. Ayadi, Mohamed A. & Ben Omrane, Walid & Lazrak, Skander & Yan, Xusheng, 2020. "OPEC production decisions, macroeconomic news, and volatility in the Canadian currency and oil markets," Finance Research Letters, Elsevier, vol. 37(C).
    23. Hailemariam, Abebe & Smyth, Russell & Zhang, Xibin, 2019. "Oil prices and economic policy uncertainty: Evidence from a nonparametric panel data model," Energy Economics, Elsevier, vol. 83(C), pages 40-51.
    24. Afees A. Salisu & Juncal Cunado & Kazeem Isah & Rangan Gupta, 2020. "Oil Price and Exchange Rate Behaviour of the BRICS for Over a Century," Working Papers 202064, University of Pretoria, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taufeeque Ahmad Siddiqui & Haseen Ahmed & Mohammad Naushad & Uzma Khan, 2023. "The Relationship between Oil Prices and Exchange Rate: A Systematic Literature Review," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 566-578, May.
    2. Gulati, Vishal, 2023. "Bibliometric review of research on exchange rate predictability and fundamentals," Finance Research Letters, Elsevier, vol. 58(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afees A. Salisu & Juncal Cuñado & Kazeem Isah & Rangan Gupta, 2021. "Stock markets and exchange rate behavior of the BRICS," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1581-1595, December.
    2. Khyati Kathuria & Nand Kumar, 2022. "Pandemic‐induced fear and government policy response as a measure of uncertainty in the foreign exchange market: Evidence from (a)symmetric wild bootstrap likelihood ratio test," Pacific Economic Review, Wiley Blackwell, vol. 27(4), pages 361-379, October.
    3. Cobb, Marcus P A, 2017. "Aggregate Density Forecasting from Disaggregate Components Using Large VARs," MPRA Paper 76849, University Library of Munich, Germany.
    4. Meng, Fanyi & Liu, Li, 2019. "Analyzing the economic sources of oil price volatility: An out-of-sample perspective," Energy, Elsevier, vol. 177(C), pages 476-486.
    5. Panopoulou, Ekaterini & Souropanis, Ioannis, 2019. "The role of technical indicators in exchange rate forecasting," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 197-221.
    6. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    7. Li Liu & Zhiyuan Pan & Yudong Wang, 2021. "What can we learn from the return predictability over the business cycle?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 108-131, January.
    8. Joscha Beckmann & Gary Koop & Dimitris Korobilis & Rainer Alexander Schüssler, 2020. "Exchange rate predictability and dynamic Bayesian learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 410-421, June.
    9. Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
    10. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    11. Allayioti, Anastasia & Venditti, Fabrizio, 2024. "The role of comovement and time-varying dynamics in forecasting commodity prices," Working Paper Series 2901, European Central Bank.
    12. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    13. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    14. Monticini, Andrea & Ravazzolo, Francesco, 2014. "Forecasting the intraday market price of money," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 304-315.
    15. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    16. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," Tinbergen Institute Discussion Papers 08-050/4, Tinbergen Institute.
    17. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
    18. Tae-Hwy Lee & Yong Bao & Burak Saltoğlu, 2007. "Comparing density forecast models Previous versions of this paper have been circulated with the title, 'A Test for Density Forecast Comparison with Applications to Risk Management' since October 2003;," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 203-225.
    19. Salisu, Afees A. & Vo, Xuan Vinh, 2021. "Firm-specific news and the predictability of Consumer stocks in Vietnam," Finance Research Letters, Elsevier, vol. 41(C).
    20. Kolasa, Marcin & Rubaszek, Michał, 2015. "Forecasting using DSGE models with financial frictions," International Journal of Forecasting, Elsevier, vol. 31(1), pages 1-19.

    More about this item

    Keywords

    OPEC News; Exchange Rate Forecasting; Bayesian Dynamic Learning;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.