IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/87309.html
   My bibliography  Save this paper

Stretching the Duck's Neck: The effect of climate change on future electricity demand

Author

Listed:
  • Rivers, Nicholas
  • Shaffer, Blake

Abstract

This paper examines how climate change will affect both the level and timing of future electricity demand across Canada. Using an original dataset of hourly electricity demand across all Canadian provinces combined with household-level microdata on air conditioner ownership, we estimate temperature responsiveness including both the direct effect of temperature on demand for cooling services, as well as the indirect effect of increasing the stock of temperature-sensitive durables, such as air conditioners. We find only a small increase in total demand by end-century, although the result differs across provinces. The small aggregate result reflects the mitigating effect of rising temperature in a cold country such as Canada, whereby increases in electricity demand for air conditioning as summer temperatures rise is largely offset by reduced winter heating demand. Although we project limited change in overall electricity demand, we do project changes in the timing of demand, both seasonally and diurnally. In particular, we find seasonal peaks shift from winter to summer in most regions, as well as a large increase in intraday ramping requirements—the difference between minimum and maximum demand within a day—suggesting electricity systems of the future will place an even greater value on storage and flexibility.

Suggested Citation

  • Rivers, Nicholas & Shaffer, Blake, 2018. "Stretching the Duck's Neck: The effect of climate change on future electricity demand," MPRA Paper 87309, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:87309
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/87309/1/MPRA_paper_87309.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2005. "Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 151-184, February.
    2. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    3. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    4. Maximilian Auffhammer & Anin Aroonruengsawat, 2011. "Simulating the impacts of climate change, prices and population on California’s residential electricity consumption," Climatic Change, Springer, vol. 109(1), pages 191-210, December.
    5. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    6. Joshua Graff Zivin & Solomon M. Hsiang & Matthew Neidell, 2018. "Temperature and Human Capital in the Short and Long Run," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 77-105.
    7. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    8. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2016. "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 105-159.
    9. Matthew E. Kahn, 2016. "The Climate Change Adaptation Literature," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 166-178.
    10. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    11. Garth Heutel & Nolan H. Miller & David Molitor, 2021. "Adaptation and the Mortality Effects of Temperature across U.S. Climate Regions," The Review of Economics and Statistics, MIT Press, vol. 103(4), pages 740-753, October.
    12. Austin C. Smith, 2016. "Spring Forward at Your Own Risk: Daylight Saving Time and Fatal Vehicle Crashes," American Economic Journal: Applied Economics, American Economic Association, vol. 8(2), pages 65-91, April.
    13. Maximilian Auffhammer, 2018. "Climate Adaptive Response Estimation: Short And Long Run Impacts Of Climate Change On Residential Electricity and Natural Gas Consumption Using Big Data," NBER Working Papers 24397, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blake Shaffer, 2019. "The Role Of Storage In Alberta’S Electricity Market: Summary Of A School Of Public Policy Roundtable Event," SPP Briefing Papers, The School of Public Policy, University of Calgary, vol. 12(28), September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    2. Cui, Xiaomeng & Gafarov, Bulat & Ghanem, Dalia & Kuffner, Todd, 2024. "On model selection criteria for climate change impact studies," Journal of Econometrics, Elsevier, vol. 239(1).
    3. Kahn, Matthew E. & Mohaddes, Kamiar & Ng, Ryan N.C. & Pesaran, M. Hashem & Raissi, Mehdi & Yang, Jui-Chung, 2021. "Long-term macroeconomic effects of climate change: A cross-country analysis," Energy Economics, Elsevier, vol. 104(C).
    4. Nicholas Rivers & Blake Shaffer, 2020. "Stretching the Duck: How Rising Temperatures will Change the Level and Shape of Future Electricity Consumption," The Energy Journal, , vol. 41(5), pages 55-88, September.
    5. Acevedo, Sebastian & Mrkaic, Mico & Novta, Natalija & Pugacheva, Evgenia & Topalova, Petia, 2020. "The Effects of Weather Shocks on Economic Activity: What are the Channels of Impact?," Journal of Macroeconomics, Elsevier, vol. 65(C).
    6. Sam Fankhauser, 2017. "Adaptation to Climate Change," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 209-230, October.
    7. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and Joint Time Use," CESifo Working Paper Series 10464, CESifo.
    8. Chang, Jun-Jie & Mi, Zhifu & Wei, Yi-Ming, 2023. "Temperature and GDP: A review of climate econometrics analysis," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 383-392.
    9. Jiao, Xiyu & Pretis, Felix & Schwarz, Moritz, 2024. "Testing for coefficient distortion due to outliers with an application to the economic impacts of climate change," Journal of Econometrics, Elsevier, vol. 239(1).
    10. Cosaert, Sam & Nieto Castro, Adrian & Tatsiramos, Konstantinos, 2023. "Temperature and the Timing of Work," IZA Discussion Papers 16480, Institute of Labor Economics (IZA).
    11. Graff Zivin, Joshua & Song, Yingquan & Tang, Qu & Zhang, Peng, 2020. "Temperature and high-stakes cognitive performance: Evidence from the national college entrance examination in China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    12. Picchio, Matteo & van Ours, Jan C., 2024. "The impact of high temperatures on performance in work-related activities," Labour Economics, Elsevier, vol. 87(C).
    13. Antonio Bento & Noah S. Miller & Mehreen Mookerjee & Edson R. Severnini, 2020. "A Unifying Approach to Measuring Climate Change Impacts and Adaptation," NBER Working Papers 27247, National Bureau of Economic Research, Inc.
    14. Jonathan Colmer, 2021. "Temperature, Labor Reallocation, and Industrial Production: Evidence from India," American Economic Journal: Applied Economics, American Economic Association, vol. 13(4), pages 101-124, October.
    15. Auffhammer, Maximilian, 2022. "Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    16. R. Jisung Park & Joshua Goodman & Michael Hurwitz & Jonathan Smith, 2020. "Heat and Learning," American Economic Journal: Economic Policy, American Economic Association, vol. 12(2), pages 306-339, May.
    17. Feriga,Moustafa Amgad Moustafa Ahmed Moustafa & Lozano Gracia,Nancy & Serneels,Pieter Maria, 2024. "The Impact of Climate Change on Work : Lessons for Developing Countries," Policy Research Working Paper Series 10682, The World Bank.
    18. Moustafa Feriga & Mancy Lozano Gracia & Pieter Serneels, 2024. "The impact of climate change on work lessons for developing countries," CSAE Working Paper Series 2024-02, Centre for the Study of African Economies, University of Oxford.
    19. Bijnens, Gert & Anyfantaki, Sofia & Colciago, Andrea & De Mulder, Jan & Falck, Elisabeth & Labhard, Vincent & Lopez-Garcia, Paloma & Meriküll, Jaanika & Parker, Miles & Röhe, Oke & Schroth, Joachim & , 2024. "The impact of climate change and policies on productivity," Occasional Paper Series 340, European Central Bank.
    20. Arbex, Marcelo & Batu, Michael, 2020. "What if people value nature? Climate change and welfare costs," Resource and Energy Economics, Elsevier, vol. 61(C).

    More about this item

    Keywords

    Climate change; future electricity demand; diurnal shape;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:87309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.