IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/75536.html
   My bibliography  Save this paper

VAR, ARIMA, Üstsel Düzleme, Karma ve İlave-Faktör Yöntemlerinin Özel Tüketim Harcamalarına ait Ex Post Öngörü Başarılarının Karşılaştırılması
[A Comparison of Ex-Post Forecast Accuracies for VAR, ARIMA, Exponential Smoothing, Combining and Add-Factor Methods for Private Consumption]

Author

Listed:
  • Bilgili, Faik

Abstract

The aim of this study is to compare the ex post forecast accuracies of VAR, ARIMA, ES, Combining and Add-factor methods. In this comparison, the ex post forecasts of 2000:1-2000:4 are obtained by using the data of the Turkish private consumption for the period of 1987:1-1999:4. Beside private consumption, for VAR method, the Turkish GDP data is employed for the same periods. Later, the seasonality and stationarity analyses are run for these two series. The series are seasonally adjusted by the additive decomposition method and found as I(1). In the following steps, the ex post forecast models of these methods are established. Forecast outputs are evaluated by the criteria of MAE, MAPE, MSE, RMSE and Theil U. In conclusion of this analysis, the combining model of VAR-ES is found the best among others.

Suggested Citation

  • Bilgili, Faik, 2002. "VAR, ARIMA, Üstsel Düzleme, Karma ve İlave-Faktör Yöntemlerinin Özel Tüketim Harcamalarına ait Ex Post Öngörü Başarılarının Karşılaştırılması [A Comparison of Ex-Post Forecast Accuracies for VAR, A," MPRA Paper 75536, University Library of Munich, Germany, revised 2002.
  • Handle: RePEc:pra:mprapa:75536
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/75536/1/MPRA_paper_75536.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bilgili, Faik, 2000. "Forecasting the Macro Targets of Turkish Economy for the Year 2000: An Application of Box-Jenkins and Exponential Smoothing Methods," MPRA Paper 75532, University Library of Munich, Germany.
    2. Spyros Makridakis & Robert L. Winkler, 1983. "Averages of Forecasts: Some Empirical Results," Management Science, INFORMS, vol. 29(9), pages 987-996, September.
    3. Bilgili, Faik, 2001. "ARIMA ve VAR Modellerinin Tahmin Başarılarının Karşılaştırılması [A comparison of VAR and ARIMA Models’ forecasting accuracies]," MPRA Paper 75609, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hatice Erkekoglu & Aweng Peter Majok Garang & Adire Simon Deng, 2020. "Comparative Evaluation of Forecast Accuracies for ARIMA, Exponential Smoothing and VAR," International Journal of Economics and Financial Issues, Econjournals, vol. 10(6), pages 206-216.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    2. Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
    3. Julia A. Minson & Jennifer S. Mueller & Richard P. Larrick, 2018. "The Contingent Wisdom of Dyads: When Discussion Enhances vs. Undermines the Accuracy of Collaborative Judgments," Management Science, INFORMS, vol. 64(9), pages 4177-4192, September.
    4. Robert L. Winkler & Robert T. Clemen, 2004. "Multiple Experts vs. Multiple Methods: Combining Correlation Assessments," Decision Analysis, INFORMS, vol. 1(3), pages 167-176, September.
    5. Pennings, Clint L.P. & van Dalen, Jan & Rook, Laurens, 2019. "Coordinating judgmental forecasting: Coping with intentional biases," Omega, Elsevier, vol. 87(C), pages 46-56.
    6. Lisheng He & Pantelis P. Analytis & Sudeep Bhatia, 2022. "The Wisdom of Model Crowds," Management Science, INFORMS, vol. 68(5), pages 3635-3659, May.
    7. Xi Wu & Adam Blake, 2023. "The Impact of the COVID-19 Crisis on Air Travel Demand: Some Evidence From China," SAGE Open, , vol. 13(1), pages 21582440231, January.
    8. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    9. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    10. Johannes Müller-Trede & Shoham Choshen-Hillel & Meir Barneron & Ilan Yaniv, 2018. "The Wisdom of Crowds in Matters of Taste," Management Science, INFORMS, vol. 64(4), pages 1779-1803, April.
    11. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    12. Szymon Lis & Marcin Chlebus, 2021. "Comparison of the accuracy in VaR forecasting for commodities using different methods of combining forecasts," Working Papers 2021-11, Faculty of Economic Sciences, University of Warsaw.
    13. Caesar Lack, 2006. "Forecasting Swiss inflation using VAR models," Economic Studies 2006-02, Swiss National Bank.
    14. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
    15. Joshua Gallin & Randal Verbrugge, 2007. "Improving the CPI’s Age-Bias Adjustment: Leverage, Disaggregation and Model Averaging," Working Papers 411, U.S. Bureau of Labor Statistics.
    16. Antonis Michis, 2012. "Monitoring Forecasting Combinations with Semiparametric Regression Models," Working Papers 2012-2, Central Bank of Cyprus.
    17. Katarzyna Poczeta & Elpiniki I. Papageorgiou & Vassilis C. Gerogiannis, 2020. "Fuzzy Cognitive Maps Optimization for Decision Making and Prediction," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    18. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    19. Ethan Mollick & Ramana Nanda, 2016. "Wisdom or Madness? Comparing Crowds with Expert Evaluation in Funding the Arts," Management Science, INFORMS, vol. 62(6), pages 1533-1553, June.
    20. Yuliya S. Evlakhova & Alexandra A. Tregubova, 2023. "Russian Market of Online Microloans to the Population: Credit Risks Analysis," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 22(3), pages 710-738.

    More about this item

    Keywords

    VAR; ARIMA; ES; Combining and Add-factor methods; forecast accuracies;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • E21 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Consumption; Saving; Wealth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:75536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.