IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/66125.html
   My bibliography  Save this paper

Résolution des problèmes multi-objectif d’affectation et de sac-a-dos par la méthode du repère préférentiel de dominance
[Solving multiobjectif assignment problem and multiobjectif knapsack problem by dominance preferential mark method]

Author

Listed:
  • Okitonyumbe Y.F., Joseph
  • Ulungu, Berthold E.-L.

Abstract

Résumé : Les méthodes de résolution des problèmes classiques d’optimisation combinatoire multi-objectif présentent d’énormes difficultés pour leur adaptation dans le contexte multi-objectif. Dans l’une de nos publications antérieures, nous avons conçu une nouvelle méthode exacte d’optimisation combinatoire multi-objectif appelée méthode du repère préférentiel de dominance basée sur une nouvelle caractérisation des solutions efficaces des problèmes d’optimisation combinatoire multi-objectif que nous avons énoncé et démontré. Dans le but de rendre notre méthode populaire et familière, nous proposons à travers cet article, son application à la résolution deux problèmes MOCO à savoir le problème multi-objectif d’affectation et celui de sac-à-dos.

Suggested Citation

  • Okitonyumbe Y.F., Joseph & Ulungu, Berthold E.-L., 2014. "Résolution des problèmes multi-objectif d’affectation et de sac-a-dos par la méthode du repère préférentiel de dominance [Solving multiobjectif assignment problem and multiobjectif knapsack problem," MPRA Paper 66125, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:66125
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/66125/1/MPRA_paper_66125.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deckro, R. F. & Winkofsky, E. P., 1983. "Solving zero-one multiple objective programs through implicit enumeration," European Journal of Operational Research, Elsevier, vol. 12(4), pages 362-374, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yihau & Rousseau, Jean-Marc & Gendreau, Michel, 1991. "Real-Time Scheduling on a Transit Bus Route: A 0-1 Stochastic Programming Model," Transportation Research Forum Proceedings 1990s 319064, Transportation Research Forum.
    2. Karaivanova, Jasmina & Korhonen, Pekka & Narula, Subhash & Wallenius, Jyrki & Vassilev, Vassil, 1995. "A reference direction approach to multiple objective integer linear programming," European Journal of Operational Research, Elsevier, vol. 81(1), pages 176-187, February.
    3. Skriver, Anders J. V. & Andersen, Kim Allan & Holmberg, Kaj, 2004. "Bicriteria network location (BNL) problems with criteria dependent lengths and minisum objectives," European Journal of Operational Research, Elsevier, vol. 156(3), pages 541-549, August.
    4. Zhang, Cai Wen & Ong, Hoon Liong, 2004. "Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic," European Journal of Operational Research, Elsevier, vol. 159(3), pages 545-557, December.
    5. Alves, Maria Joao & Climaco, Joao, 2007. "A review of interactive methods for multiobjective integer and mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 99-115, July.
    6. Liu, Fuh-Hwa Franklin & Huang, Chueng-Chiu & Yen, Yu-Lee, 2000. "Using DEA to obtain efficient solutions for multi-objective 0-1 linear programs," European Journal of Operational Research, Elsevier, vol. 126(1), pages 51-68, October.
    7. Nikolaos Argyris & José Figueira & Alec Morton, 2011. "Identifying preferred solutions to Multi-Objective Binary Optimisation problems, with an application to the Multi-Objective Knapsack Problem," Journal of Global Optimization, Springer, vol. 49(2), pages 213-235, February.
    8. Sylva, John & Crema, Alejandro, 2004. "A method for finding the set of non-dominated vectors for multiple objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 158(1), pages 46-55, October.

    More about this item

    Keywords

    Mots clés : Méthode du repère préférentiel de dominance; Problème multi-objectif d’affectation; Problème multi-objectif de sac-à-dos; Keywords : Dominance reference mark method; multiobjective assignment problem; multiobjective knapsack Problem;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:66125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.