IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v159y2004i3p545-557.html
   My bibliography  Save this article

Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic

Author

Listed:
  • Zhang, Cai Wen
  • Ong, Hoon Liong

Abstract

No abstract is available for this item.

Suggested Citation

  • Zhang, Cai Wen & Ong, Hoon Liong, 2004. "Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic," European Journal of Operational Research, Elsevier, vol. 159(3), pages 545-557, December.
  • Handle: RePEc:eee:ejores:v:159:y:2004:i:3:p:545-557
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(03)00420-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Odile Marcotte & Richard M. Soland, 1986. "An Interactive Branch-and-Bound Algorithm for Multiple Criteria Optimization," Management Science, INFORMS, vol. 32(1), pages 61-75, January.
    2. Gülseren Kiziltan & Erkut Yucaou{g}lu, 1983. "An Algorithm for Multiobjective Zero-One Linear Programming," Management Science, INFORMS, vol. 29(12), pages 1444-1453, December.
    3. Deckro, R. F. & Winkofsky, E. P., 1983. "Solving zero-one multiple objective programs through implicit enumeration," European Journal of Operational Research, Elsevier, vol. 12(4), pages 362-374, April.
    4. George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
    5. Rasmussen, L. M., 1986. "Zero--one programming with multiple criteria," European Journal of Operational Research, Elsevier, vol. 26(1), pages 83-95, July.
    6. Ramesh, R. & Zionts, Stanley & Karwan, Mark H., 1986. "A class of practical interactive branch and bound algorithms for multicriteria integer programming," European Journal of Operational Research, Elsevier, vol. 26(1), pages 161-172, July.
    7. Viana, Ana & Pinho de Sousa, Jorge, 2000. "Using metaheuristics in multiobjective resource constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 120(2), pages 359-374, January.
    8. Alves, Maria Joao & Climaco, Joao, 2000. "An interactive reference point approach for multiobjective mixed-integer programming using branch-and-bound," European Journal of Operational Research, Elsevier, vol. 124(3), pages 478-494, August.
    9. Hapke, Maciej & Jaszkiewicz, Andrzej & Slowinski, Roman, 1998. "Interactive analysis of multiple-criteria project scheduling problems," European Journal of Operational Research, Elsevier, vol. 107(2), pages 315-324, June.
    10. Klein, Dieter & Hannan, Edward, 1982. "An algorithm for the multiple objective integer linear programming problem," European Journal of Operational Research, Elsevier, vol. 9(4), pages 378-385, April.
    11. Gerald W. Evans, 1984. "An Overview of Techniques for Solving Multiobjective Mathematical Programs," Management Science, INFORMS, vol. 30(11), pages 1268-1282, November.
    12. White, D. J., 1985. "A multiple objective interactive Lagrangean relaxation approach," European Journal of Operational Research, Elsevier, vol. 19(1), pages 82-90, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rong, Aiying & Figueira, José Rui, 2013. "A reduction dynamic programming algorithm for the bi-objective integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 231(2), pages 299-313.
    2. Rong, Aiying & Figueira, José Rui, 2014. "Dynamic programming algorithms for the bi-objective integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 236(1), pages 85-99.
    3. Bas, Esra, 2011. "An investment plan for preventing child injuries using risk priority number of failure mode and effects analysis methodology and a multi-objective, multi-dimensional mixed 0-1 knapsack model," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 748-756.
    4. Florios, Kostas & Mavrotas, George & Diakoulaki, Danae, 2010. "Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 203(1), pages 14-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alves, Maria Joao & Climaco, Joao, 2007. "A review of interactive methods for multiobjective integer and mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 99-115, July.
    2. Mavrotas, G. & Diakoulaki, D., 1998. "A branch and bound algorithm for mixed zero-one multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 107(3), pages 530-541, June.
    3. Karaivanova, Jasmina & Korhonen, Pekka & Narula, Subhash & Wallenius, Jyrki & Vassilev, Vassil, 1995. "A reference direction approach to multiple objective integer linear programming," European Journal of Operational Research, Elsevier, vol. 81(1), pages 176-187, February.
    4. Nikolaos Argyris & José Figueira & Alec Morton, 2011. "Identifying preferred solutions to Multi-Objective Binary Optimisation problems, with an application to the Multi-Objective Knapsack Problem," Journal of Global Optimization, Springer, vol. 49(2), pages 213-235, February.
    5. Sylva, John & Crema, Alejandro, 2004. "A method for finding the set of non-dominated vectors for multiple objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 158(1), pages 46-55, October.
    6. Skriver, Anders J. V. & Andersen, Kim Allan & Holmberg, Kaj, 2004. "Bicriteria network location (BNL) problems with criteria dependent lengths and minisum objectives," European Journal of Operational Research, Elsevier, vol. 156(3), pages 541-549, August.
    7. Sylva, John & Crema, Alejandro, 2007. "A method for finding well-dispersed subsets of non-dominated vectors for multiple objective mixed integer linear programs," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1011-1027, August.
    8. Farahani, Reza Zanjirani & Asgari, Nasrin, 2007. "Combination of MCDM and covering techniques in a hierarchical model for facility location: A case study," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1839-1858, February.
    9. Gutierrez, J. & Puerto, J. & Sicilia, J., 2004. "The multiscenario lot size problem with concave costs," European Journal of Operational Research, Elsevier, vol. 156(1), pages 162-182, July.
    10. Fernandez, Elena & Puerto, Justo, 2003. "Multiobjective solution of the uncapacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 145(3), pages 509-529, March.
    11. Banu Lokman & Murat Köksalan & Pekka J. Korhonen & Jyrki Wallenius, 2016. "An interactive algorithm to find the most preferred solution of multi-objective integer programs," Annals of Operations Research, Springer, vol. 245(1), pages 67-95, October.
    12. Serpil Say{i}n & Panos Kouvelis, 2005. "The Multiobjective Discrete Optimization Problem: A Weighted Min-Max Two-Stage Optimization Approach and a Bicriteria Algorithm," Management Science, INFORMS, vol. 51(10), pages 1572-1581, October.
    13. S. Razavyan, 2016. "A Method for Generating a Well-Distributed Pareto Set in Multiple Objective Mixed Integer Linear Programs Based on the Decision Maker’s Initial Aspiration Level," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-23, August.
    14. Francis Sourd & Olivier Spanjaard, 2008. "A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 472-484, August.
    15. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
    16. Jorge, Jesús M., 2009. "An algorithm for optimizing a linear function over an integer efficient set," European Journal of Operational Research, Elsevier, vol. 195(1), pages 98-103, May.
    17. Panos Kouvelis & Serpil Sayın, 2006. "Algorithm robust for the bicriteria discrete optimization problem," Annals of Operations Research, Springer, vol. 147(1), pages 71-85, October.
    18. Harold P. Benson & Serpil Sayin, 1997. "Towards finding global representations of the efficient set in multiple objective mathematical programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 47-67, February.
    19. Liu, Fuh-Hwa Franklin & Huang, Chueng-Chiu & Yen, Yu-Lee, 2000. "Using DEA to obtain efficient solutions for multi-objective 0-1 linear programs," European Journal of Operational Research, Elsevier, vol. 126(1), pages 51-68, October.
    20. Alves, Maria Joao & Climaco, Joao, 2000. "An interactive reference point approach for multiobjective mixed-integer programming using branch-and-bound," European Journal of Operational Research, Elsevier, vol. 124(3), pages 478-494, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:159:y:2004:i:3:p:545-557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.