IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/63515.html
   My bibliography  Save this paper

Beating a Random Walk: “Hard Times” for Forecasting Inflation in Post-Oil Boom Years?

Author

Listed:
  • Huseynov, Salman
  • Ahmadov, Vugar
  • Adigozalov, Shaig

Abstract

In this study, we investigate forecasting performance of various univariate and multivariate models in predicting inflation for different horizons. We design our forecast experiment for the post-oil boom years of 2010-2014 and compare forecasting ability of the different models with that of naïve ones. We find that for all forecast horizons simple naïve models have equal forecasting ability with relatively sophisticated models which allow for richer economic dynamics. To check whether forecasting ability of naïve models has not been inferior to relatively sophisticated ones in boom and pre-boom years as well, we repeat our forecast experiment and estimate the models for the period 2003-2006 and keep the years 2006-2010 for undertaking pseudo out-of-sample exercise. Our experiment reveals that surprising forecasting performance of naïve models in post-oil boom years is a new phenomenon and in fact, the employed models have exhibited significant forecasting advantage over naïve ones in boom and pre-boom years. We find that despite declining volatility in inflation over the post-oil boom years, it has become considerably difficult for our models to beat naïve ones due to recently unpredictable behavior of inflation.

Suggested Citation

  • Huseynov, Salman & Ahmadov, Vugar & Adigozalov, Shaig, 2014. "Beating a Random Walk: “Hard Times” for Forecasting Inflation in Post-Oil Boom Years?," MPRA Paper 63515, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:63515
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/63515/1/MPRA_paper_63515.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    2. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
    3. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    4. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    5. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    6. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    7. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    8. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    9. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, vol. 84(Q1), pages 4-18.
    10. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    11. Rochelle M. Edge & Refet S. Gurkaynak, 2010. "How Useful Are Estimated DSGE Model Forecasts for Central Bankers?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(2 (Fall)), pages 209-259.
    12. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salman Huseynov & Fuad Mammadov, 2016. "A small scale forecasting and simulation model for Azerbaijan (FORSAZ)," Working Papers 1608, Central Bank of Azerbaijan Republic.
    2. Vugar Ahmadov & Shaig Adigozalov & Salman Huseynov & Fuad Mammadov & Vugar Rahimov, 2016. "Forecasting inflation in post-oil boom years: A case for non-linear models?," Working Papers 1601, Central Bank of Azerbaijan Republic.
    3. Mehdiyev, Mehdi & Ahmadov, Vugar & Huseynov, Salman & Mammadov, Fuad, 2015. "Ölkə iqtisadiyyatı üzrə göstəricilərin modelləşdirilməsi və proqnozlaşdırılması: problemlər və praktiki çətinliklər [Modeling and forecasting of macroeconomic variables of the national economy: pro," MPRA Paper 63517, University Library of Munich, Germany.
    4. Vugar Rahimov & Shaig Adigozalov & Fuad Mammadov, 2016. "Determinants of Inflation in Azerbaijan," Working Papers 1607, Central Bank of Azerbaijan Republic.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    2. Higgins, Patrick & Zha, Tao & Zhong, Wenna, 2016. "Forecasting China's economic growth and inflation," China Economic Review, Elsevier, vol. 41(C), pages 46-61.
    3. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    4. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    5. Kirstin Hubrich & Frauke Skudelny, 2017. "Forecast Combination for Euro Area Inflation: A Cure in Times of Crisis?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 515-540, August.
    6. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
    7. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
    8. Philippe Goulet Coulombe, 2020. "The Macroeconomy as a Random Forest," Papers 2006.12724, arXiv.org, revised Mar 2021.
    9. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    10. Gary Koop & Dimitris Korobilis, 2019. "Forecasting with High‐Dimensional Panel VARs," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(5), pages 937-959, October.
    11. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    12. Patrick C. Higgins, 2014. "GDPNow: A Model for GDP \"Nowcasting\"," FRB Atlanta Working Paper 2014-7, Federal Reserve Bank of Atlanta.
    13. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    14. Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
    15. Angela Capolongo & Claudia Pacella, 2021. "Forecasting inflation in the euro area: countries matter!," Empirical Economics, Springer, vol. 61(5), pages 2477-2499, November.
    16. Hauzenberger Niko & Huber Florian & Pfarrhofer Michael & Zörner Thomas O., 2021. "Stochastic model specification in Markov switching vector error correction models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-17, April.
    17. Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
    18. Kabukçuoğlu, Ayşe & Martínez-García, Enrique, 2018. "Inflation as a global phenomenon—Some implications for inflation modeling and forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 46-73.
    19. Colin Bermingham & Antonello D’Agostino, 2014. "Understanding and forecasting aggregate and disaggregate price dynamics," Empirical Economics, Springer, vol. 46(2), pages 765-788, March.
    20. Gil-Alana, Luis A. & Gupta, Rangan & Olubusoye, Olusanya E. & Yaya, OlaOluwa S., 2016. "Time series analysis of persistence in crude oil price volatility across bull and bear regimes," Energy, Elsevier, vol. 109(C), pages 29-37.

    More about this item

    Keywords

    Inflation; Forecasting; Time Series methods; Bayesian methods;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:63515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.