Beating a Random Walk: “Hard Times” for Forecasting Inflation in Post-Oil Boom Years?
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Marta Bańbura, 2008.
"Large Bayesian VARs,"
2008 Meeting Papers
334, Society for Economic Dynamics.
- Giannone, Domenico & Reichlin, Lucrezia & Bańbura, Marta, 2008. "Large Bayesian VARs," Working Paper Series 966, European Central Bank.
- Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
- Hendry, David F. & Mizon, Grayham E., 2014.
"Unpredictability in economic analysis, econometric modeling and forecasting,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
- David Hendry, 2011. "Unpredictability in Economic Analyis, Econometric Modelling and Forecasting," Economics Series Working Papers 551, University of Oxford, Department of Economics.
- David F. Hendry & Grayham E. Mizon, 2013. "Unpredictability in Economic Analysis, Econometric Modeling and Forecasting," Economics Papers 2013-W04, Economics Group, Nuffield College, University of Oxford.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
- Koop, Gary & Korobilis, Dimitris, 2013.
"Large time-varying parameter VARs,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
- Koop, Gary & Korobilis, Dimitris, 2012. "Large time-varying parameter VARs," MPRA Paper 38591, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2012. "Large Time-Varying Parameter VARs," Working Paper series 11_12, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis, 2012. "Large time-varying parameter VARs," Working Papers 2012_04, Business School - Economics, University of Glasgow.
- Koop, Gary & Korobilis, Dimitris, 2012. "Large Time-Varying Parameter VARs," SIRE Discussion Papers 2012-14, Scottish Institute for Research in Economics (SIRE).
- James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015.
"Prior Selection for Vector Autoregressions,"
The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," NBER Working Papers 18467, National Bureau of Economic Research, Inc.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2012. "Prior selection for vector autoregressions," Working Paper Series 1494, European Central Bank.
- Domenico Giannone & Michèle Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," Working Papers ECARES ECARES 2012-002, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2012. "Prior Selection for Vector Autoregressions," CEPR Discussion Papers 8755, C.E.P.R. Discussion Papers.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Reichlin, Lucrezia & Giannone, Domenico & Banbura, Marta, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
- Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, vol. 84(Q1), pages 4-18.
- Chow, Gregory C & Lin, An-loh, 1971.
"Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series,"
The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
- Tom Doan, "undated". "CHOWLIN: RATS procedure to distribute a series to a higher frequency using related series," Statistical Software Components RTS00036, Boston College Department of Economics.
- Tom Doan, "undated". "DISAGGREGATE: RATS procedure to implement general disaggregation (interpolation/distribution) procedure," Statistical Software Components RTS00050, Boston College Department of Economics.
- Rochelle M. Edge & Refet S. Gurkaynak, 2010.
"How Useful Are Estimated DSGE Model Forecasts for Central Bankers?,"
Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(2 (Fall)), pages 209-259.
- Gürkaynak, Refet & Edge, Rochelle, 2010. "How Useful Are Estimated DSGE Model Forecasts for Central Bankers?," CEPR Discussion Papers 8158, C.E.P.R. Discussion Papers.
- Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Salman Huseynov & Fuad Mammadov, 2016.
"A small scale forecasting and simulation model for Azerbaijan (FORSAZ),"
Working Papers
1608, Central Bank of Azerbaijan Republic.
- Huseynov, Salman & Mammadov, Fuad, 2016. "A small scale forecasting and simulation model for Azerbaijan (FORSAZ)," MPRA Paper 76348, University Library of Munich, Germany.
- Vugar Ahmadov & Shaig Adigozalov & Salman Huseynov & Fuad Mammadov & Vugar Rahimov, 2016. "Forecasting inflation in post-oil boom years: A case for non-linear models?," Working Papers 1601, Central Bank of Azerbaijan Republic.
- Mehdiyev, Mehdi & Ahmadov, Vugar & Huseynov, Salman & Mammadov, Fuad, 2015. "Ölkə iqtisadiyyatı üzrə göstəricilərin modelləşdirilməsi və proqnozlaşdırılması: problemlər və praktiki çətinliklər [Modeling and forecasting of macroeconomic variables of the national economy: pro," MPRA Paper 63517, University Library of Munich, Germany.
- Vugar Rahimov & Shaig Adigozalov & Fuad Mammadov, 2016. "Determinants of Inflation in Azerbaijan," Working Papers 1607, Central Bank of Azerbaijan Republic.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tallman, Ellis W. & Zaman, Saeed, 2020.
"Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy,"
International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
- Ellis W. Tallman & Saeed Zaman, 2018. "Combining Survey Long-Run Forecasts and Nowcasts with BVAR Forecasts Using Relative Entropy," Working Papers (Old Series) 1809, Federal Reserve Bank of Cleveland.
- Higgins, Patrick & Zha, Tao & Zhong, Wenna, 2016.
"Forecasting China's economic growth and inflation,"
China Economic Review, Elsevier, vol. 41(C), pages 46-61.
- Patrick Higgins & Tao Zha & Karen Zhong, 2016. "Forecasting China's Economic Growth and Inflation," NBER Working Papers 22402, National Bureau of Economic Research, Inc.
- Patrick C. Higgins & Tao Zha & Karen Zhong, 2016. "Forecasting China's Economic Growth and Inflation," FRB Atlanta Working Paper 2016-7, Federal Reserve Bank of Atlanta.
- Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014.
"Short-term inflation projections: A Bayesian vector autoregressive approach,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
- Domenico Giannone & Michèle Lenza & Daphné Momferatu & Luca Onorante, 2010. "Short-term inflation projections: a Bayesian vector autoregressive approach," Working Papers ECARES ECARES 2010-011, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & Lenza, Michele & Onorante, Luca & Momferatou, Daphne, 2010. "Short-Term Inflation Projections: a Bayesian Vector Autoregressive approach," CEPR Discussion Papers 7746, C.E.P.R. Discussion Papers.
- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Kirstin Hubrich & Frauke Skudelny, 2017.
"Forecast Combination for Euro Area Inflation: A Cure in Times of Crisis?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 515-540, August.
- Kirstin Hubrich & Frauke Skudelny, 2016. "Forecast Combination for Euro Area Inflation - A Cure in Times of Crisis?," Finance and Economics Discussion Series 2016-104, Board of Governors of the Federal Reserve System (U.S.).
- Hubrich, Kirstin & Skudelny, Frauke, 2016. "Forecast combination for euro area inflation: a cure in times of crisis?," Working Paper Series 1972, European Central Bank.
- Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
- Joshua C.C. Chan & Rodney W. Strachan, 2023.
"Bayesian State Space Models In Macroeconometrics,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
- Joshua C.C. Chan & Rodney W. Strachan, 2020. "Bayesian state space models in macroeconometrics," CAMA Working Papers 2020-90, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Philippe Goulet Coulombe, 2020. "The Macroeconomy as a Random Forest," Papers 2006.12724, arXiv.org, revised Mar 2021.
- Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
- Gary Koop & Dimitris Korobilis, 2019.
"Forecasting with High‐Dimensional Panel VARs,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(5), pages 937-959, October.
- Gary Koop & Dimitris Korobilis, 2015. "Forecasting With High Dimensional Panel VARs," Working Papers 2015_25, Business School - Economics, University of Glasgow.
- Gary Koop & Dimitris Korobilis, 2018. "Forecasting with High-Dimensional Panel VARs," Working Paper series 18-20, Rimini Centre for Economic Analysis.
- Koop, G & Korobilis, D, 2018. "Forecasting with High-Dimensional Panel VARs," Essex Finance Centre Working Papers 21329, University of Essex, Essex Business School.
- Koop, Gary & Korobilis, Dimitris, 2015. "Forecasting with High-Dimensional Panel VARs," MPRA Paper 84275, University Library of Munich, Germany, revised 31 Jan 2018.
- Berg, Tim O. & Henzel, Steffen R., 2015.
"Point and density forecasts for the euro area using Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
- Berg, Tim Oliver & Henzel, Steffen, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79783, Verein für Socialpolitik / German Economic Association.
- Tim Oliver Berg & Steffen Henzel, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," ifo Working Paper Series 155, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Tim Oliver Berg & Steffen Henzel, 2014. "Point and Density Forecasts for the Euro Area Using Bayesian VARs," CESifo Working Paper Series 4711, CESifo.
- Patrick C. Higgins, 2014. "GDPNow: A Model for GDP \"Nowcasting\"," FRB Atlanta Working Paper 2014-7, Federal Reserve Bank of Atlanta.
- Raffaella Giacomini & Barbara Rossi, 2015.
"Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in nonstationary environments: What works and what doesn't in reduced-form and structural models," Economics Working Papers 1476, Department of Economics and Business, Universitat Pompeu Fabra.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
- Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
- Angela Capolongo & Claudia Pacella, 2021.
"Forecasting inflation in the euro area: countries matter!,"
Empirical Economics, Springer, vol. 61(5), pages 2477-2499, November.
- Angela Capolongo & Claudia Pacella, 2019. "Forecasting inflation in the euro area: countries matter!," Temi di discussione (Economic working papers) 1224, Bank of Italy, Economic Research and International Relations Area.
- Hauzenberger Niko & Huber Florian & Pfarrhofer Michael & Zörner Thomas O., 2021.
"Stochastic model specification in Markov switching vector error correction models,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-17, April.
- Huber, Florian & Pfarrhofer, Michael & Zörner, Thomas O., 2018. "Stochastic model specification in Markov switching vector error correction models," Working Papers in Economics 2018-3, University of Salzburg.
- Niko Hauzenberger & Florian Huber & Michael Pfarrhofer & Thomas O. Zorner, 2018. "Stochastic model specification in Markov switching vector error correction models," Papers 1807.00529, arXiv.org, revised Sep 2019.
- Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
- Kabukçuoğlu, Ayşe & Martínez-García, Enrique, 2018.
"Inflation as a global phenomenon—Some implications for inflation modeling and forecasting,"
Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 46-73.
- Ayse Kabukcuoglu & Enrique Martínez-García, 2015. "Inflation as a Global Phenomenon—Some Implications for Policy Analysis and Forecasting," Koç University-TUSIAD Economic Research Forum Working Papers 1520, Koc University-TUSIAD Economic Research Forum.
- Ayse Kabukcuoglu & Enrique Martínez García, 2016. "Inflation as a global phenomenon - some implications for policy analysis and forecasting," Globalization Institute Working Papers 261, Federal Reserve Bank of Dallas.
- Colin Bermingham & Antonello D’Agostino, 2014.
"Understanding and forecasting aggregate and disaggregate price dynamics,"
Empirical Economics, Springer, vol. 46(2), pages 765-788, March.
- D'Agostino, Antonello & Bermingham, Colin, 2010. "Understanding and Forecasting Aggregate and Disaggregate Price Dynamics," Research Technical Papers 8/RT/10, Central Bank of Ireland.
- Bermingham, Colin & D'Agostino, Antonello, 2011. "Understanding and forecasting aggregate and disaggregate price dynamics," Working Paper Series 1365, European Central Bank.
- Gil-Alana, Luis A. & Gupta, Rangan & Olubusoye, Olusanya E. & Yaya, OlaOluwa S., 2016.
"Time series analysis of persistence in crude oil price volatility across bull and bear regimes,"
Energy, Elsevier, vol. 109(C), pages 29-37.
- Luis A. Gil-Alana & Rangan Gupta & Olusanya E. Olubusoye & OlaOluwa S. Yaya, 2015. "Time Series Analysis of Persistence in Crude Oil Price Volatility across Bull and Bear Regimes," Working Papers 201580, University of Pretoria, Department of Economics.
More about this item
Keywords
Inflation; Forecasting; Time Series methods; Bayesian methods;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FOR-2015-04-19 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:63515. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.