IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/63517.html
   My bibliography  Save this paper

Ölkə iqtisadiyyatı üzrə göstəricilərin modelləşdirilməsi və proqnozlaşdırılması: problemlər və praktiki çətinliklər
[Modeling and forecasting of macroeconomic variables of the national economy: problems and practical issues]

Author

Listed:
  • Mehdiyev, Mehdi
  • Ahmadov, Vugar
  • Huseynov, Salman
  • Mammadov, Fuad

Abstract

In this paper, we study main problems and practical issues of modeling and forecasting of macroeconomic variables in the national economy. For that, we employ astructural VAR models and estimate interdependencies among different economic variables. Initial data analysis of macroeconomic variables incorporated into the model show that there exist certain anomalies and high volatility in their dynamics. Only that fact alone can be considered among important factors which strongly contribute to weak interdependencies among variables. It is not surprising that researchers using different macroeconomic variables on the national economy cannot find statistically significant relations among them. Here, we use different statistical methods to reduce volatilities and anomalies present in their dynamics. We estimate VAR models with different number of variables and employ two forecasting methodologies (Waggoner and Zha (1999), Banbura, Giannone and Lenza (2014)) to construct our conditional and unconditional forecasts on several variables. In the end, we demonstrate practical problems of modeling and forecasting of macroeconomic variables and provide some policy recommendations to improve quality of statistical data on the national economy.

Suggested Citation

  • Mehdiyev, Mehdi & Ahmadov, Vugar & Huseynov, Salman & Mammadov, Fuad, 2015. "Ölkə iqtisadiyyatı üzrə göstəricilərin modelləşdirilməsi və proqnozlaşdırılması: problemlər və praktiki çətinliklər [Modeling and forecasting of macroeconomic variables of the national economy: pro," MPRA Paper 63517, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:63517
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/63517/1/MPRA_paper_63517.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    2. Helmut Lütkepohl, 2005. "New Introduction to Multiple Time Series Analysis," Springer Books, Springer, number 978-3-540-27752-1, April.
    3. Jaromír Beneš & Andrew Binning & Kirdan Lees, 2008. "Incorporating judgement with DSGE models," Reserve Bank of New Zealand Discussion Paper Series DP2008/10, Reserve Bank of New Zealand.
    4. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    5. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    6. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
    7. Günter Coenen, 2005. "Asymptotic confidence bands for the estimated autocovariance and autocorrelation functions of vector autoregressive models," Empirical Economics, Springer, vol. 30(1), pages 65-75, January.
    8. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    9. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    10. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    11. Huseynov, Salman & Ahmadov, Vugar & Adigozalov, Shaig, 2014. "Beating a Random Walk: “Hard Times” for Forecasting Inflation in Post-Oil Boom Years?," MPRA Paper 63515, University Library of Munich, Germany.
    12. Salman Huseynov & Vugar Ahmadov, 2013. "Oil Windfalls, Fiscal Policy and Money Market Disequilibrium," William Davidson Institute Working Papers Series wp1051, William Davidson Institute at the University of Michigan.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kemal Bagzibagli, 2014. "Monetary transmission mechanism and time variation in the Euro area," Empirical Economics, Springer, vol. 47(3), pages 781-823, November.
    2. Tomas Havranek & Marek Rusnak, 2013. "Transmission Lags of Monetary Policy: A Meta-Analysis," International Journal of Central Banking, International Journal of Central Banking, vol. 9(4), pages 39-76, December.
    3. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    4. Marco Lombardi & Chiara Osbat & Bernd Schnatz, 2012. "Global commodity cycles and linkages: a FAVAR approach," Empirical Economics, Springer, vol. 43(2), pages 651-670, October.
    5. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    6. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    7. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    8. Ganics, Gergely & Odendahl, Florens, 2021. "Bayesian VAR forecasts, survey information, and structural change in the euro area," International Journal of Forecasting, Elsevier, vol. 37(2), pages 971-999.
    9. MAMATZAKIS, emmanuel & MAMATZAKIS, E, 2022. "Understanding the impact of travel on wellbeing: evidence for Great Britain during the pandemic," MPRA Paper 112974, University Library of Munich, Germany.
    10. Knut Are Aastveit & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2017. "Have Standard VARS Remained Stable Since the Crisis?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 931-951, August.
    11. Knotek, Edward S. & Zaman, Saeed, 2019. "Financial nowcasts and their usefulness in macroeconomic forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1708-1724.
    12. Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2016. "Large Bayesian VARMAs," Journal of Econometrics, Elsevier, vol. 192(2), pages 374-390.
    13. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    14. Antonio M. Conti & Andrea Nobili & Federico M. Signoretti, 2018. "Bank capital constraints, lending supply and economic activity," Temi di discussione (Economic working papers) 1199, Bank of Italy, Economic Research and International Relations Area.
    15. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
    16. Alain KABUNDI & Rangan GUPTA, 2009. "The Effect of Monetary Policy on House Price Inflation: A Factor Augmented Vector Autoregression (FAVAR) Approach," EcoMod2009 21500048, EcoMod.
    17. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    18. Gupta, Rangan & Jurgilas, Marius & Kabundi, Alain, 2010. "The effect of monetary policy on real house price growth in South Africa: A factor-augmented vector autoregression (FAVAR) approach," Economic Modelling, Elsevier, vol. 27(1), pages 315-323, January.
    19. Todd E. Clark & Michael W. McCracken, 2014. "Evaluating Conditional Forecasts from Vector Autoregressions," Working Papers 2014-25, Federal Reserve Bank of St. Louis.
    20. Lutz Kilian, 2013. "Structural vector autoregressions," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 22, pages 515-554, Edward Elgar Publishing.

    More about this item

    Keywords

    Forecasting; Time series methods; Bayesian methods;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:63517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.