IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/6329.html
   My bibliography  Save this paper

Empirical Study of the effect of including Skewness and Kurtosis in Black Scholes option pricing formula on S&P CNX Nifty index Options

Author

Listed:
  • Saurabha, Rritu
  • Tiwari, Manvendra

Abstract

The most popular model for pricing options, both in financial literature as well as in practice has been the Black-Scholes model. In spite of its wide spread use the model appears to be deficient in pricing deep in the money and deep out of the money options using statistical estimates of volatility. This limitation has been taken into account by practitioners using the concept of implied volatility. The value of implied volatility for different strike prices should theoretically be identical, but is usually seen in the market to vary. In most markets across the world it has been observed that the implied volatilities of different strike prices form a pattern of either a ‘smile’ or ‘skew’. Theoretically, since volatility is a property of the underlying asset it should be predicted by the pricing formula to be identical for all derivatives based on that same asset. Hull [1993] and Nattenburg [1994] have attributed the volatility smile to the non normal Skewness and Kurtosis of stock returns. Many improvements to the Black-Scholes formula have been suggested in academic literature for addressing the issue of volatility smile. This paper studies the effect of using a variation of the BS model (suggested by Corrado & Sue [1996] incorporating non-normal skewness and kurtosis) to price call options on S&P CNX Nifty. The results strongly suggest that the incorporation of skewness and kurtosis into the option pricing formula yields values much closer to market prices. Based on this result and the fact that this approach does not add any further complexities to the option pricing formula, we suggest that this modified approach should be considered as a better alternative.

Suggested Citation

  • Saurabha, Rritu & Tiwari, Manvendra, 2007. "Empirical Study of the effect of including Skewness and Kurtosis in Black Scholes option pricing formula on S&P CNX Nifty index Options," MPRA Paper 6329, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:6329
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/6329/1/MPRA_paper_6329.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A, 1995. "Option Pricing and the Martingale Restriction," The Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 1091-1124.
    2. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Working Paper 1159, Economics Department, Queen's University.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. C. J. Corrado & Tie Su, 1997. "Implied volatility skews and stock return skewness and kurtosis implied by stock option prices," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 73-85, March.
    5. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    6. Christine A. Brown & David M. Robinson, 2002. "Skewness and Kurtosis Implied by Option Prices: A Correction," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 25(2), pages 279-282, June.
    7. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    10. Barone-Adesi, Giovanni & Whaley, Robert E., 1986. "The valuation of American call options and the expected ex-dividend stock price decline," Journal of Financial Economics, Elsevier, vol. 17(1), pages 91-111, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tanuj Nandan & Puja Agrawal, 2016. "Pricing Efficiency in CNX Nifty Index Options Using the Black–Scholes Model: A Comparative Study of Alternate Volatility Measures," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 10(2), pages 281-304, May.
    2. Fleming, Euan & Villano, Renato & Williamson, Brendon, 2013. "Structuring Exotic Options Contracts on Water to Improve the Efficiency of Resource Allocation in the Australian Water Market," Papers 234295, University of Melbourne, Melbourne School of Land and Environment.
    3. Nagarajan, Thirukumaran & Malipeddi, Koteswararao, 2009. "Effects of market sentiment in index option pricing: a study of CNX NIFTY index option," MPRA Paper 17943, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikkinen, Jussi, 2003. "Normality tests of option-implied risk-neutral densities: evidence from the small Finnish market," International Review of Financial Analysis, Elsevier, vol. 12(2), pages 99-116.
    2. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    3. Pena, Ignacio & Rubio, Gonzalo & Serna, Gregorio, 1999. "Why do we smile? On the determinants of the implied volatility function," Journal of Banking & Finance, Elsevier, vol. 23(8), pages 1151-1179, August.
    4. Robert Tompkins, 2001. "Implied volatility surfaces: uncovering regularities for options on financial futures," The European Journal of Finance, Taylor & Francis Journals, vol. 7(3), pages 198-230.
    5. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    6. Lina M. Cortés & Javier Perote & Andrés Mora-Valencia, 2017. "Implicit probability distribution for WTI options: The Black Scholes vs. the semi-nonparametric approach," Documentos de Trabajo de Valor Público 15923, Universidad EAFIT.
    7. Hosam Ki & Byungwook Choi & Kook‐Hyun Chang & Miyoung Lee, 2005. "Option pricing under extended normal distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(9), pages 845-871, September.
    8. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    9. Cortés, Lina M. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Retrieving the implicit risk neutral density of WTI options with a semi-nonparametric approach," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    10. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    11. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    12. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    13. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    14. repec:wyi:journl:002108 is not listed on IDEAS
    15. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    16. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    17. León, à ngel & Mencía, Javier & Sentana, Enrique, 2009. "Parametric Properties of Semi-Nonparametric Distributions, with Applications to Option Valuation," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 176-192.
    18. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2008. "Pricing options on scenario trees," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 283-298, February.
    19. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    20. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, October.
    21. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2010. "Generalized parameter functions for option pricing," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 633-646, March.

    More about this item

    Keywords

    black scholes; skewness; kurtosis; nse; nifty; india;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:6329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.