IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/56081.html
   My bibliography  Save this paper

Multivariate bubbles and antibubbles

Author

Listed:
  • Fry, John

Abstract

In this paper we develop models for multivariate financial bubbles and antibubbles based on statistical physics. In particular, we extend a rich set of univariate models to higher dimensions. Changes in market regime can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. Moreover, our multivariate models are able to capture some of the contagious effects that occur during such episodes. We are able to show that declining lending quality helped fuel a bubble in the US stock market prior to 2008. Further, our approach offers interesting insights into the spatial development of UK house prices.

Suggested Citation

  • Fry, John, 2014. "Multivariate bubbles and antibubbles," MPRA Paper 56081, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:56081
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/56081/1/MPRA_paper_56081.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nicolas Carnot & Vincent Koen & Bruno Tissot, 2011. "Economic Forecasting and Policy," Palgrave Macmillan Books, Palgrave Macmillan, edition 0, number 978-0-230-30644-8, March.
    2. AfDB AfDB, . "Africa’s Voice and Financier," African Development Fund Series, African Development Bank, number 12 edited by Jihene Aissaoui.
    3. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, September.
    4. Yannick Malevergne & Didier Sornette, 2006. "Extreme Financial Risks : From Dependence to Risk Management," Post-Print hal-02298069, HAL.
    5. Oecd, 2012. "Carbon finance in Africa," OECD Journal: General Papers, OECD Publishing, vol. 2010(4), pages 143-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    2. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2016. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. I," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 44, pages 5-24.
    3. Mark Mizraki, 2015. "Conversation with Mark Mizruchi:“There is Very Little Organizational Theory Left in Sociology Departments”," Journal of Economic Sociology, National Research University Higher School of Economics, vol. 16(3), pages 14-25.
    4. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    5. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2017. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. Part 2," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 45, pages 5-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    2. Rémy Chicheportiche & Jean-Philippe Bouchaud, 2012. "The Joint Distribution Of Stock Returns Is Not Elliptical," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 1-23.
    3. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    4. Maghyereh Aktham Issa & Awartani Basel, 2012. "Modeling and Forecasting Value-at-Risk in the UAE Stock Markets: The Role of Long Memory, Fat Tails and Asymmetries in Return Innovations," Review of Middle East Economics and Finance, De Gruyter, vol. 8(1), pages 1-22, August.
    5. Ruble, Isabella & Nader, Pamela, 2011. "Transforming shortcomings into opportunities: Can market incentives solve Lebanon's energy crisis?," Energy Policy, Elsevier, vol. 39(5), pages 2467-2474, May.
    6. Abedifar, Pejman & Hasan, Iftekhar & Tarazi, Amine, 2016. "Finance-growth nexus and dual-banking systems: Relative importance of Islamic banks," Journal of Economic Behavior & Organization, Elsevier, vol. 132(S), pages 198-215.
    7. J.M. Fry, 2012. "Exogenous and endogenous market crashes as phase transitions in complex financial systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(12), pages 1-6, December.
    8. Alexander F. Legwegoh & Evan D. G. Fraser & Krishna Bahadur KC & Philip Antwi-Agyei, 2015. "Do Dietary Changes Increase the Propensity of Food Riots? An Exploratory Study of Changing Consumption Patterns and the Inclination to Engage in Food-Related Protests," Sustainability, MDPI, vol. 7(10), pages 1-21, October.
    9. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    10. Slanina, Frantisek, 2013. "Essentials of Econophysics Modelling," OUP Catalogue, Oxford University Press, number 9780199299683.
    11. Fry, John, 2012. "Exogenous and endogenous crashes as phase transitions in complex financial systems," MPRA Paper 36202, University Library of Munich, Germany.
    12. Fabrizio Pomponio & Frédéric Abergel, 2013. "Multiple-limit trades : empirical facts and application to lead-lag measures," Post-Print hal-00745317, HAL.
    13. Lubashevsky, Ihor & Friedrich, Rudolf & Heuer, Andreas & Ushakov, Andrey, 2009. "Generalized superstatistics of nonequilibrium Markovian systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4535-4550.
    14. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    15. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    16. Alves, L.G.A. & Ribeiro, H.V. & Lenzi, E.K. & Mendes, R.S., 2014. "Empirical analysis on the connection between power-law distributions and allometries for urban indicators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 175-182.
    17. S. Reimann, 2007. "Price dynamics from a simple multiplicative random process model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(4), pages 381-394, April.
    18. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2015. "Partial correlation analysis: applications for financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 569-578, April.
    19. W.-S. Jung & F. Z. Wang & S. Havlin & T. Kaizoji & H.-T. Moon & H. E. Stanley, 2008. "Volatility return intervals analysis of the Japanese market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 62(1), pages 113-119, March.
    20. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.

    More about this item

    Keywords

    Econophysics Bubbles Antibubbles Contagion;

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • G0 - Financial Economics - - General
    • G01 - Financial Economics - - General - - - Financial Crises

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:56081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.