IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/40339.html
   My bibliography  Save this paper

The Budapest liquidity measure and the price impact function

Author

Listed:
  • Gyarmati, Ákos
  • Lublóy, Ágnes
  • Váradi, Kata

Abstract

During the 2007/2008 global economic crisis, market liquidity became an important issue both on the field of theoretical finance and in practice. In theory market liquidity is usually being modeled with price impact functions. In this study we show how the price impact function can be estimated from order book data. Our estimation is based on the Budapest Liquidity Measure (BLM) which is a liquidity measure that captures the transaction cost nature of liquidity. The main outcome of this paper is a method with which market participants can easily estimate price impact functions. This is of major importance, as the price impact function can be a useful tool during a dynamic portfolio optimization process. The price impact functions can help investors in their trading decisions.

Suggested Citation

  • Gyarmati, Ákos & Lublóy, Ágnes & Váradi, Kata, 2012. "The Budapest liquidity measure and the price impact function," MPRA Paper 40339, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:40339
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/40339/1/MPRA_paper_40339.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin D.D. Evans & Richard K. Lyons, 2017. "Order Flow and Exchange Rate Dynamics," World Scientific Book Chapters, in: Studies in Foreign Exchange Economics, chapter 6, pages 247-290, World Scientific Publishing Co. Pte. Ltd..
    2. P. Weber & B. Rosenow, 2005. "Order book approach to price impact," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 357-364.
    3. Sergei Maslov & Mark Mills, 2001. "Price fluctuations from the order book perspective - empirical facts and a simple model," Papers cond-mat/0102518, arXiv.org.
    4. Lublóy, Ágnes & Gyarmati, Ákos & Váradi, Kata, 2012. "Virtuális árhatás a Budapesti Értéktőzsdén [Virtual price effects on the Budapest stock exchange]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 508-539.
    5. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2006. "Institutional Investors and Stock Market Volatility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 461-504.
    6. Challet, Damien & Stinchcombe, Robin, 2001. "Analyzing and modeling 1+1d markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 300(1), pages 285-299.
    7. Hausman, Jerry A. & Lo, Andrew W. & MacKinlay, A. Craig, 1992. "An ordered probit analysis of transaction stock prices," Journal of Financial Economics, Elsevier, vol. 31(3), pages 319-379, June.
    8. Vasiliki Plerou & Parameswaran Gopikrishnan & Xavier Gabaix & H. Eugene Stanley, 2001. "Quantifying Stock Price Response to Demand Fluctuations," Papers cond-mat/0106657, arXiv.org.
    9. Kutas, Gábor & Végh, Richárd, 2005. "A Budapest Likviditási Mérték bevezetéséről. A magyar részvények likviditásának összehasonlító elemzése a budapesti, a varsói és a londoni értéktőzsdéken [Introduction of the Budapest Liquidity Mea," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 686-711.
    10. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. "An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    11. J. Doyne Farmer & Laszlo Gillemot & Fabrizio Lillo & Szabolcs Mike & Anindya Sen, 2004. "What really causes large price changes?," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 383-397.
    12. Kempf, Alexander & Korn, Olaf, 1999. "Market depth and order size1," Journal of Financial Markets, Elsevier, vol. 2(1), pages 29-48, February.
    13. Maslov, Sergei & Mills, Mark, 2001. "Price fluctuations from the order book perspective—empirical facts and a simple model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 234-246.
    14. Marcus Lim & Richard Coggins, 2005. "The immediate price impact of trades on the Australian Stock Exchange," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 365-377.
    15. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    16. Niemeyer, Jonas & Sandås, Patrik, 1995. "An Empirical Analysis of the Trading Structure at the Stockholm Stock Exchange," SSE/EFI Working Paper Series in Economics and Finance 44, Stockholm School of Economics.
    17. Carl Hopman, 2007. "Do supply and demand drive stock prices?," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 37-53.
    18. Barclay, Michael J. & Warner, Jerold B., 1993. "Stealth trading and volatility : Which trades move prices?," Journal of Financial Economics, Elsevier, vol. 34(3), pages 281-305, December.
    19. Fabrizio Lillo & J. Doyne Farmer & Rosario N. Mantegna, 2003. "Master curve for price-impact function," Nature, Nature, vol. 421(6919), pages 129-130, January.
    20. Marc Potters & Jean-Philippe Bouchaud, 2002. "More statistical properties of order books and price impact," Science & Finance (CFM) working paper archive 0210710, Science & Finance, Capital Fund Management.
    21. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2010. "The Price Impact of Order Book Events," Papers 1011.6402, arXiv.org, revised Apr 2011.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lublóy, Ágnes & Gyarmati, Ákos & Váradi, Kata, 2012. "Virtuális árhatás a Budapesti Értéktőzsdén [Virtual price effects on the Budapest stock exchange]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 508-539.
    2. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    3. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    4. Wei-Xing Zhou, 2012. "Universal price impact functions of individual trades in an order-driven market," Quantitative Finance, Taylor & Francis Journals, vol. 12(8), pages 1253-1263, June.
    5. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    6. J. Doyne Farmer & Austin Gerig & Fabrizio Lillo & Henri Waelbroeck, 2013. "How efficiency shapes market impact," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1743-1758, November.
    7. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    8. P. Weber & B. Rosenow, 2005. "Order book approach to price impact," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 357-364.
    9. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    10. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    11. Zoltan Eisler & Janos Kertesz & Fabrizio Lillo & Rosario Mantegna, 2009. "Diffusive behavior and the modeling of characteristic times in limit order executions," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 547-563.
    12. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2010. "The Price Impact of Order Book Events," Papers 1011.6402, arXiv.org, revised Apr 2011.
    13. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    14. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical shape function of limit-order books in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5182-5188.
    15. Hai-Chuan Xu & Wei Chen & Xiong Xiong & Wei Zhang & Wei-Xing Zhou & H Eugene Stanley, 2016. "Limit-order book resiliency after effective market orders: Spread, depth and intensity," Papers 1602.00731, arXiv.org, revised Feb 2017.
    16. Adam Zawadowski & Gyorgy Andor & Janos Kertesz, 2006. "Short-term market reaction after extreme price changes of liquid stocks," Quantitative Finance, Taylor & Francis Journals, vol. 6(4), pages 283-295.
    17. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010. "Complex stock trading network among investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.
    18. Carl Hopman, 2007. "Do supply and demand drive stock prices?," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 37-53.
    19. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.
    20. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2006. "Institutional Investors and Stock Market Volatility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 461-504.

    More about this item

    Keywords

    market liquidity; price impact function; liquidity measure;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:40339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.