IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/37965.html
   My bibliography  Save this paper

Selecting between different productivity measurement approaches: An application using EU KLEMS data

Author

Listed:
  • Giraleas, Dimitris
  • Emrouznejad, Ali
  • Thanassoulis, Emmanuel

Abstract

Over the years, a number of different approaches were developed to measure productivity change, both in the micro and the macro setting. Since each approach comes with its own set of assumptions, it is not uncommon in practice that they produce different, and sometimes quite divergent, productivity change estimates. This paper introduces a framework that can be used to select between the most common productivity measurement approaches based on a number of characteristics specific to the application/dataset at hand; these were selected based on the results of previous simulation analysis that examined the accuracy of different productivity measurement approaches under different conditions. The characteristics in question include input volatility through time, the extent of technical inefficiency and noise present in the dataset and whether the parametric approaches are likely to suffer from functional form miss-specification and are examined using a number of well-established diagnostics and indicators. Once assessed, the most appropriate approach can be selected based on its relative accuracy under these conditions; accuracy can in turn be assessed using simulation analysis, either previously published or designed specifically to emulate the characteristics of the application/dataset at hand. As an example of how this selection framework can be implemented in practice, we assess the productivity performance of a number of EU countries using the EU KLEMS dataset.

Suggested Citation

  • Giraleas, Dimitris & Emrouznejad, Ali & Thanassoulis, Emmanuel, 2012. "Selecting between different productivity measurement approaches: An application using EU KLEMS data," MPRA Paper 37965, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:37965
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/37965/1/MPRA_paper_37965.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    2. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    3. Portela, Maria C.A.S. & Thanassoulis, Emmanuel, 2010. "Malmquist-type indices in the presence of negative data: An application to bank branches," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1472-1483, July.
    4. Banker, Rajiv D. & Chang, Hsihui & Cooper, William W., 2004. "A simulation study of DEA and parametric frontier models in the presence of heteroscedasticity," European Journal of Operational Research, Elsevier, vol. 153(3), pages 624-640, March.
    5. van Ark, Bart, 1998. "Productivity," Journal of the Japanese and International Economies, Elsevier, vol. 12(2), pages 171-174, June.
    6. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 2008. "The Measurement of Productive Efficiency and Productivity Growth," OUP Catalogue, Oxford University Press, number 9780195183528.
    7. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    8. Fare, Rolf & Shawna Grosskopf & Mary Norris & Zhongyang Zhang, 1994. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries," American Economic Review, American Economic Association, vol. 84(1), pages 66-83, March.
    9. Massimo Del Gatto & Adriana Di Liberto & Carmelo Petraglia, 2011. "Measuring Productivity," Journal of Economic Surveys, Wiley Blackwell, vol. 25(5), pages 952-1008, December.
    10. Bert M. Balk, 2007. "Measuring Productivity Change without Neoclassical Assumptions: A Conceptual Analysis," CEPA Working Papers Series WP042007, School of Economics, University of Queensland, Australia.
    11. Resti, Andrea, 2000. "Efficiency measurement for multi-product industries: A comparison of classic and recent techniques based on simulated data," European Journal of Operational Research, Elsevier, vol. 121(3), pages 559-578, March.
    12. Diewert, W E, 1992. "The Measurement of Productivity," Bulletin of Economic Research, Wiley Blackwell, vol. 44(3), pages 163-198, July.
    13. James Odeck, 2007. "Measuring technical efficiency and productivity growth: a comparison of SFA and DEA on Norwegian grain production data," Applied Economics, Taylor & Francis Journals, vol. 39(20), pages 2617-2630.
    14. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    15. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Boďa & Mariana Považanová, 2020. "Productivity patterns in Europe: adaptation of the Malmquist index to measuring group performance and productivity change over time," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 47(4), pages 949-989, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giraleas, Dimitris & Emrouznejad, Ali & Thanassoulis, Emmanuel, 2012. "Productivity change using growth accounting and frontier-based approaches – Evidence from a Monte Carlo analysis," European Journal of Operational Research, Elsevier, vol. 222(3), pages 673-683.
    2. Marion Dovis, 2009. "Formulation et estimation des modèles de mesure de la productivité totale des facteurs : une étude sur un panel d'entreprises turques," Revue d'économie politique, Dalloz, vol. 119(6), pages 945-982.
    3. Bansal, Pooja & Kumar, Sunil & Mehra, Aparna & Gulati, Rachita, 2022. "Developing two dynamic Malmquist-Luenberger productivity indices: An illustrated application for assessing productivity performance of Indian banks," Omega, Elsevier, vol. 107(C).
    4. Massimo Del Gatto & Adriana Di Liberto & Carmelo Petraglia, 2011. "Measuring Productivity," Journal of Economic Surveys, Wiley Blackwell, vol. 25(5), pages 952-1008, December.
    5. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    6. Marijn Verschelde & Michel Dumont & Glenn Rayp & Bruno Merlevede, 2016. "Semiparametric stochastic metafrontier efficiency of European manufacturing firms," Journal of Productivity Analysis, Springer, vol. 45(1), pages 53-69, February.
    7. Valentin Zelenyuk, 2023. "Productivity analysis: roots, foundations, trends and perspectives," Journal of Productivity Analysis, Springer, vol. 60(3), pages 229-247, December.
    8. Ahn, Heinz & Clermont, Marcel & Langner, Julia, 2023. "Comparative performance analysis of frontier-based efficiency measurement methods – A Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 307(1), pages 294-312.
    9. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    10. Krüger, Jens J., 2012. "A Monte Carlo study of old and new frontier methods for efficiency measurement," European Journal of Operational Research, Elsevier, vol. 222(1), pages 137-148.
    11. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    12. Mark Andor & Frederik Hesse, "undated". "The StoNED age: The Departure Into a New Era of Efficiency Analysis? An MC study Comparing StoNED and the "Oldies" (SFA and DEA)," Working Papers 201285, Institute of Spatial and Housing Economics, Munster Universitary.
    13. Isabel Narbón-Perpiñá & Maria Teresa Balaguer-Coll & Marko Petrović & Emili Tortosa-Ausina, 2020. "Which estimator to measure local governments’ cost efficiency? The case of Spanish municipalities," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 11(1), pages 51-82, March.
    14. Farsi, Mehdi & Filippini, Massimo, 2009. "An analysis of cost efficiency in Swiss multi-utilities," Energy Economics, Elsevier, vol. 31(2), pages 306-315, March.
    15. Niquidet, Kurt & Nelson, Harry, 2010. "Sawmill production in the interior of British Columbia: A stochastic ray frontier approach," Journal of Forest Economics, Elsevier, vol. 16(4), pages 257-267, December.
    16. Phu Nguyen-Van & Nguyen To-The, 2016. "Technical efficiency and agricultural policy: evidence from the tea production in Vietnam," Review of Agricultural, Food and Environmental Studies, Springer, vol. 97(3), pages 173-184, November.
    17. Phill Wheat & Alexander D. Stead & William H. Greene, 2019. "Robust stochastic frontier analysis: a Student’s t-half normal model with application to highway maintenance costs in England," Journal of Productivity Analysis, Springer, vol. 51(1), pages 21-38, February.
    18. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    19. Bos, Jaap W.B. & Economidou, Claire & Sanders, Mark W.J.L., 2013. "Innovation over the industry life-cycle: Evidence from EU manufacturing," Journal of Economic Behavior & Organization, Elsevier, vol. 86(C), pages 78-91.
    20. Kurt E. Schnier & Ronald G. Felthoven, 2013. "Production Efficiency and Exit in Rights-Based Fisheries," Land Economics, University of Wisconsin Press, vol. 89(3), pages 538-557.

    More about this item

    Keywords

    Data envelopment analysis; Productivity and competitiveness; Simulation; Stochastic Frontier Analysis; Growth accounting;
    All these keywords.

    JEL classification:

    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:37965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.