IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/36787.html
   My bibliography  Save this paper

Performance metrics for algorithmic traders

Author

Listed:
  • Rosenthal, Dale W.R.

Abstract

Portfolio traders may split large orders into smaller orders scheduled over time to reduce price impact. Since handling many orders is cumbersome, these smaller orders are often traded in an automated (“algorithmic”) manner. We propose metrics using these orders to help measure various trading-related skills with low noise. Managers may use these metrics to assess how separate parts of the trading process contribute execution, market timing, and order scheduling skills versus luck. These metrics could save 4 basis points in cost per trade yielding a 15% reduction in expenses and saving $7.3 billion annually for US-domiciled equity mutual funds alone. The metrics also allow recovery of parameters for a price impact model with lasting and ephemeral effects. Some metrics may help evaluate external intermediaries, test for possible front-running, and indicate sloppy or overly passive trading.

Suggested Citation

  • Rosenthal, Dale W.R., 2009. "Performance metrics for algorithmic traders," MPRA Paper 36787, University Library of Munich, Germany, revised 04 Jan 2012.
  • Handle: RePEc:pra:mprapa:36787
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/36787/1/MPRA_paper_36787.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/36938/1/MPRA_paper_36938.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    2. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Azencott & A. Beri & Y. Gadhyan & N. Joseph & C.-A. Lehalle & M. Rowley, 2014. "Real-time market microstructure analysis: online transaction cost analysis," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1167-1185, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    2. Danny Lo, 2015. "Essays in Market Microstructure and Investor Trading," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2015, January-A.
    3. Edward Sun & Timm Kruse & Min-Teh Yu, 2014. "High frequency trading, liquidity, and execution cost," Annals of Operations Research, Springer, vol. 223(1), pages 403-432, December.
    4. Chen, Shi & Härdle, Wolfgang & Schienle, Melanie, 2021. "High-dimensional statistical learning techniques for time-varying limit order book networks," IRTG 1792 Discussion Papers 2021-015, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    5. Benjamin Clapham & Martin Haferkorn & Kai Zimmermann, 2020. "Does Speed Matter? The Role Of High‐Frequency Trading For Order Book Resiliency," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 43(4), pages 933-964, December.
    6. Arie E. Gozluklu & Pietro Perotti & Barbara Rindi & Roberta Fredella, 2015. "Lot Size Constraints and Market Quality: Evidence from the Borsa Italiana," Financial Management, Financial Management Association International, vol. 44(4), pages 905-945, October.
    7. Danny Lo, 2015. "Essays in Market Microstructure and Investor Trading," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 22, July-Dece.
    8. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    9. Albert S. Kyle & Anna A. Obizhaeva & Tugkan Tuzun, 2016. "Microstructure Invariance in U.S. Stock Market Trades," Finance and Economics Discussion Series 2016-034, Board of Governors of the Federal Reserve System (U.S.).
    10. Craig W. Holden & Stacey Jacobsen & Avanidhar Subrahmanyam, 2014. "The Empirical Analysis of Liquidity," Foundations and Trends(R) in Finance, now publishers, vol. 8(4), pages 263-365, December.
    11. Qixuan Luo & Shijia Song & Handong Li, 2023. "Research on the Effects of Liquidation Strategies in the Multi-asset Artificial Market," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1721-1750, December.
    12. Pham, Manh Cuong & Anderson, Heather Margot & Duong, Huu Nhan & Lajbcygier, Paul, 2020. "The effects of trade size and market depth on immediate price impact in a limit order book market," Journal of Economic Dynamics and Control, Elsevier, vol. 120(C).
    13. Novotný, Jan & Petrov, Dmitri & Urga, Giovanni, 2015. "Trading price jump clusters in foreign exchange markets," Journal of Financial Markets, Elsevier, vol. 24(C), pages 66-92.
    14. Albert S. Kyle & Anna Obizhaeva & Tugkan Tuzun, 2016. "Microstructure Invariance in U.S. Stock Market Trades," Working Papers w0230, New Economic School (NES).
    15. Kyle, Albert S. & Obizhaeva, Anna A. & Tuzun, Tugkan, 2020. "Microstructure invariance in U.S. stock market trades," Journal of Financial Markets, Elsevier, vol. 49(C).
    16. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Amirhossein Sadoghi & Jan Vecer, 2022. "Optimal liquidation problem in illiquid markets," Post-Print hal-03696768, HAL.
    18. van Kervel, V.L., 2013. "Competition between stock exchanges and optimal trading," Other publications TiSEM 5c608a0f-527d-441d-a910-e, Tilburg University, School of Economics and Management.
    19. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    20. Benos, Evangelos & Sagade, Satchit, 2012. "High-frequency trading behaviour and its impact on market quality: evidence from the UK equity market," Bank of England working papers 469, Bank of England.

    More about this item

    Keywords

    trading skill; short term market timing; order scheduling; luck versus skill;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
    • G24 - Financial Economics - - Financial Institutions and Services - - - Investment Banking; Venture Capital; Brokerage

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:36787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.