IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/121484.html
   My bibliography  Save this paper

The CORSIA climate agreement on international air transport as a game

Author

Listed:
  • Proost, Stef
  • Vander Loo, Saskia

Abstract

The CORSIA climate agreement requires the signatories to cap their bilateral international aviation carbon emissions to 85% of the level of 2019. Signatories can satisfy the cap by using offsets and sustainable aviation (SAF) fuels.This international agreement faces three handicaps: the agreement must be self-enforcing, very cheap offsets and SAF’s with a high indirect emission are not credible and offsets and SAF’s do not guarantee climate neutrality. We study the participation decision of a country to join or not CORSIA in a Nash context. It is shown that there are pairs of countries for whom it is beneficial to join CORSIA if their climate benefit is higher than half the cost of offsets or SAF fuels. The numerical model illustration for the 10 most important countries shows that only a few countries are likely to effectively participate and will do this via offsets rather than via SAF blends.

Suggested Citation

  • Proost, Stef & Vander Loo, Saskia, 2024. "The CORSIA climate agreement on international air transport as a game," MPRA Paper 121484, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:121484
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/121484/1/MPRA_paper_121484.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brueckner, Jan K. & Zhang, Anming, 2010. "Airline emission charges: Effects on airfares, service quality, and aircraft design," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 960-971, September.
    2. Brueckner, Jan K. & Abreu, Chrystyane, 2020. "Does the fuel-conservation effect of higher fuel prices appear at both the aircraft-model and aggregate airline levels?," Economics Letters, Elsevier, vol. 197(C).
    3. Brueckner, Jan K. & Abreu, Chrystyane, 2017. "Airline fuel usage and carbon emissions: Determining factors," Journal of Air Transport Management, Elsevier, vol. 62(C), pages 10-17.
    4. Proost, Stef, 2024. "Looking for winning policies to address the climate issue in EU-aviation," Journal of Air Transport Management, Elsevier, vol. 115(C).
    5. Ulrike Kornek & Robert Marschinski, 2018. "Prices vs quantities for international environmental agreements," Oxford Economic Papers, Oxford University Press, vol. 70(4), pages 1084-1107.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spiritus, Kevin & Lehmann, Etienne & Renes, Sander & Zoutman, Floris T., 0. "Optimal taxation with multiple incomes and types," Theoretical Economics, Econometric Society.
    2. Proost, Stef, 2024. "Looking for winning policies to address the climate issue in EU-aviation," Journal of Air Transport Management, Elsevier, vol. 115(C).
    3. Huang, Robert & Kahn, Matthew E., 2024. "An economic analysis of United States public transit carbon emissions dynamics," Regional Science and Urban Economics, Elsevier, vol. 107(C).
    4. Philip G. Gayle & Ying Lin, 2021. "Cost Pass‐Through In Commercial Aviation: Theory And Evidence," Economic Inquiry, Western Economic Association International, vol. 59(2), pages 803-828, April.
    5. Brueckner, Jan K. & Kahn, Matthew E. & Nickelsburg, Jerry, 2024. "How do airlines cut fuel usage, reducing their carbon emissions?," Economics of Transportation, Elsevier, vol. 38(C).
    6. Bernardo, Valeria & Fageda, Xavier & Teixidó, Jordi, 2024. "Flight ticket taxes in Europe: Environmental and economic impact," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    7. Fageda, Xavier & Teixidó, Jordi J., 2022. "Pricing carbon in the aviation sector: Evidence from the European emissions trading system," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    8. Brueckner, Jan K. & Abreu, Chrystyane, 2020. "Does the fuel-conservation effect of higher fuel prices appear at both the aircraft-model and aggregate airline levels?," Economics Letters, Elsevier, vol. 197(C).
    9. Lyu, Chen & Liu, Xiaoman & Wang, Zhen & Yang, Lu & Liu, Hao & Yang, Nan & Xu, Shaodong & Cao, Libin & Zhang, Zhe & Pang, Lingyun & Zhang, Li & Cai, Bofeng, 2023. "An emissions inventory using flight information reveals the long-term changes of aviation CO2 emissions in China," Energy, Elsevier, vol. 262(PB).
    10. Wang, Chunan & Wang, Xiaoyu, 2019. "Airport congestion delays and airline networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 328-349.
    11. Sheu, Jiuh-Biing, 2014. "Airline ambidextrous competition under an emissions trading scheme – A reference-dependent behavioral perspective," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 115-145.
    12. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2015. "Would competition between air transport and high-speed rail benefit environment and social welfare?," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 118-137.
    13. Harstad, Bård & Lancia, Francesco & Russo, Alessia, 2022. "Prices vs. quantities for self-enforcing agreements," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    14. Ming Liu & Yueyu Ding & Lihua Sun & Runchun Zhang & Yue Dong & Zihan Zhao & Yiting Wang & Chaoran Liu, 2023. "Green Airline-Fleet Assignment with Uncertain Passenger Demand and Fuel Price," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    15. Zanin, Massimiliano & Delibasi, Tuba Toru & Triana, Julio César & Mirchandani, Vaishali & à lvarez Pereira, Emilio & Enrich, Alberto & Perez, David & Paşaoğlu, Cengiz & Fidanoglu, Melih & Koyuncu, , 2016. "Towards a secure trading of aviation CO2 allowance," Journal of Air Transport Management, Elsevier, vol. 56(PA), pages 3-11.
    16. Torben K. Mideksa, 2020. "Pricing Pollution," CESifo Working Paper Series 8269, CESifo.
    17. Sun, Xiaoqian & Wandelt, Sebastian & Zhang, Anming, 2022. "STARTUPS: Founding airlines during COVID-19 - A hopeless endeavor or an ample opportunity for a better aviation system?," Transport Policy, Elsevier, vol. 118(C), pages 10-19.
    18. Pagoni, Ioanna & Psaraki-Kalouptsidi, Voula, 2016. "The impact of carbon emission fees on passenger demand and air fares: A game theoretic approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 41-51.
    19. Wang, Chunan & Wang, Xiaoyu, 2019. "Why do airlines prefer multi-hub networks?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 56-74.
    20. (Kevin) Park, Hyosoo & Chang, Young-Tae & Zou, Bo, 2018. "Emission control under private port operator duopoly," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 40-65.

    More about this item

    Keywords

    Aviation; climate; international climate agreement; fuel efficiency aviation; offsets; biofuels;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:121484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.