IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/11384.html
   My bibliography  Save this paper

Grid-enabled estimation of structural economic models

Author

Listed:
  • Zhorin, Victor
  • Stef-Praun, Tiberiu

Abstract

In this paper we present our experiences with the execution of structural economic models over the Grid using ”cloud computing”. We describe cases of distributed implementation and execution of occupational choice and financial deepening models of economic growth. We show how the application of Grid technology and resources naturally fits the studies of economic systems, by allowing us to capture effects of computationally challenging real-world characteristics such as heterogeneity of wealth, talent and access costs among economic agents.

Suggested Citation

  • Zhorin, Victor & Stef-Praun, Tiberiu, 2008. "Grid-enabled estimation of structural economic models," MPRA Paper 11384, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:11384
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/11384/1/MPRA_paper_11384.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gine, Xavier & Townsend, Robert M., 2004. "Evaluation of financial liberalization: a general equilibrium model with constrained occupation choice," Journal of Development Economics, Elsevier, vol. 74(2), pages 269-307, August.
    2. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
    3. Tesfatsion, Leigh, 2006. "Agent-Based Computational Economics: A Constructive Approach to Economic Theory," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 16, pages 831-880, Elsevier.
    4. Jeong, Hyeok & Townsend, Robert M., 2008. "Growth And Inequality: Model Evaluation Based On An Estimation-Calibration Strategy," Macroeconomic Dynamics, Cambridge University Press, vol. 12(S2), pages 231-284, September.
    5. William Easterly, 2002. "The Elusive Quest for Growth: Economists' Adventures and Misadventures in the Tropics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550423, April.
    6. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    7. Banerjee, Abhijit V. & Duflo, Esther, 2005. "Growth Theory through the Lens of Development Economics," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 7, pages 473-552, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klaus Jaffe, 2015. "Agent based simulations visualize Adam Smith's invisible hand by solving Friedrich Hayek's Economic Calculus," Papers 1509.04264, arXiv.org, revised Nov 2015.
    2. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    3. Ashraf, Quamrul & Gershman, Boris & Howitt, Peter, 2017. "Banks, market organization, and macroeconomic performance: An agent-based computational analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 135(C), pages 143-180.
    4. Доможиров Д. А. & Ибрагимов Н. М. & Мельникова Л. В. & Цыплаков А. А., 2017. "Интеграция подхода «затраты – выпуск» в агент-ориентированное моделирование. Часть 1. Методологические основы. Integration of input–output approach into agent-based modeling. Part 1. Methodological pr," Мир экономики и управления // Вестник НГУ. Cерия: Cоциально-экономические науки, Socionet;Новосибирский государственный университет, vol. 17(1), pages 86-99.
    5. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Gräbner, Claudius, 2016. "From realism to instrumentalism - and back? Methodological implications of changes in the epistemology of economics," MPRA Paper 71933, University Library of Munich, Germany.
    7. Polyzos, Stathis & Samitas, Aristeidis & Katsaiti, Marina-Selini, 2020. "Who is unhappy for Brexit? A machine-learning, agent-based study on financial instability," International Review of Financial Analysis, Elsevier, vol. 72(C).
    8. Emanuele Ciola & Edoardo Gaffeo & Mauro Gallegati, 2021. "Search for Profits and Business Fluctuations: How Banks' Behaviour Explain Cycles?," Working Papers 450, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    9. Oeffner, Marc, 2008. "Agent–Based Keynesian Macroeconomics - An Evolutionary Model Embedded in an Agent–Based Computer Simulation," MPRA Paper 18199, University Library of Munich, Germany, revised Oct 2009.
    10. Paul De Grauwe, 2012. "Booms and busts: New Keynesian and behavioural explanations," Chapters, in: Robert M. Solow & Jean-Philippe Touffut (ed.), What’s Right with Macroeconomics?, chapter 6, pages 149-180, Edward Elgar Publishing.
    11. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    12. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    13. Furtado, Bernardo Alves & Eberhardt, Isaque Daniel Rocha, 2015. "Modelo espacial simples da economia: uma proposta teórico-metodológica [A simple spatial economic model: a proposal]," MPRA Paper 67005, University Library of Munich, Germany.
    14. Pascal Seppecher & Isabelle L Salle & Marc Lavoie, 2018. "What drives markups? Evolutionary pricing in an agent-based stock-flow consistent macroeconomic model," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(6), pages 1045-1067.
    15. Mellár, Tamás & Hau, Orsolya & Sebestyén, Tamás, 2013. "Láthatóvá tehető-e a láthatatlan kéz? Egy ágensalapú piaci modell tapasztalatai [Can the invisible hand be rendered visible? Experiences of an agent-based market model]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(9), pages 992-1024.
    16. repec:hal:spmain:info:hdl:2441/5rtilga41c899ab0rctd3cp2r3 is not listed on IDEAS
    17. Mauro Napoletano, 2018. "A Short Walk on the Wild Side: Agent-Based Models and their Implications for Macroeconomic Analysis," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(3), pages 257-281.
    18. Li, Hongyan & Sun, Junjie & Tesfatsion, Leigh, 2010. "Testing institutional arrangements via agent-based modeling: a U.S. electricity market example," ISU General Staff Papers 201002020800001088, Iowa State University, Department of Economics.
    19. Nigar Hashimzade & Gareth Myles, 2017. "Risk-based Audits in a Behavioral Model," Public Finance Review, , vol. 45(1), pages 140-165, January.
    20. Elena G. Irwin, 2010. "New Directions For Urban Economic Models Of Land Use Change: Incorporating Spatial Dynamics And Heterogeneity," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 65-91, February.
    21. Khamdamov, T., 2022. "A brief overview of the evolution of computer simulations in economic research," Journal of the New Economic Association, New Economic Association, vol. 54(2), pages 189-207.

    More about this item

    Keywords

    occupational choice; financial deepening; economic growth; cloud computing;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:11384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.