IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/10470.html
   My bibliography  Save this paper

Hierarchical Bayes prediction for the 2008 US Presidential election

Author

Listed:
  • Sinha, Pankaj
  • Bansal, Ashok

Abstract

In this paper a procedure is developed to derive the predictive density function of a future observation for prediction in a multiple regression model under hierarchical priors for the vector parameter. The derived predictive density function is applied for prediction in a multiple regression model given in Fair (2002) to study the effect of fluctuations in economic variables on voting behavior in U.S. presidential election. Numerical illustrations suggest that the predictive performance of Fair’s model is good under hierarchical Bayes setup, except for the 1992 election. Fair’s model under hierarchical Bayes setup indicates that the forthcoming 2008 US presidential election is likely to be a very close election slightly tilted towards Republicans. It is likely that republicans will get 50.90% vote with probability for win 0.550 in the 2008 US Presidential Election.

Suggested Citation

  • Sinha, Pankaj & Bansal, Ashok, 2008. "Hierarchical Bayes prediction for the 2008 US Presidential election," MPRA Paper 10470, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:10470
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/10470/1/MPRA_paper_10470.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fair, Ray C, 1978. "The Effect of Economic Events on Votes for President," The Review of Economics and Statistics, MIT Press, vol. 60(2), pages 159-173, May.
    2. Douglas Hibbs, 2000. "Bread and Peace Voting in U.S. Presidential Elections," Public Choice, Springer, vol. 104(1), pages 149-180, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sinha, Pankaj & Verma, Aniket & Shah, Purav & Singh, Jahnavi & Panwar, Utkarsh, 2020. "Prediction for the 2020 United States Presidential Election using Machine Learning Algorithm: Lasso Regression," MPRA Paper 103889, University Library of Munich, Germany, revised 31 Oct 2020.
    2. Sinha, Pankaj & Srinivas, Sandeep & Paul, Anik & Chaudhari, Gunjan, 2016. "Forecasting 2016 US Presidential Elections Using Factor Analysis and Regression Model," MPRA Paper 74618, University Library of Munich, Germany, revised 17 Oct 2016.
    3. Sinha, Pankaj & Verma, Aniket & Shah, Purav & Singh, Jahnavi & Panwar, Utkarsh, 2020. "Prediction for the 2020 United States Presidential Election using Linear Regression Model," MPRA Paper 103890, University Library of Munich, Germany, revised 20 Oct 2020.
    4. Pankaj Sinha & Aastha Sharma & Harsh Vardhan Singh, 2012. "Prediction For The 2012 United States Presidential Election Using Multiple Regression Model," Journal of Prediction Markets, University of Buckingham Press, vol. 6(2), pages 77-97.
    5. Sinha, Pankaj & Thomas, Ashley Rose & Ranjan, Varun, 2012. "Forecasting 2012 United States Presidential election using Factor Analysis, Logit and Probit Models," MPRA Paper 42062, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sinha, Pankaj & Srinivas, Sandeep & Paul, Anik & Chaudhari, Gunjan, 2016. "Forecasting 2016 US Presidential Elections Using Factor Analysis and Regression Model," MPRA Paper 74618, University Library of Munich, Germany, revised 17 Oct 2016.
    2. Kang, Seungwoo & Oh, Hee-Seok, 2024. "Forecasting South Korea’s presidential election via multiparty dynamic Bayesian modeling," International Journal of Forecasting, Elsevier, vol. 40(1), pages 124-141.
    3. Souren Soumbatiants & Henry Chappell & Eric Johnson, 2006. "Using state polls to forecast U.S. Presidential election outcomes," Public Choice, Springer, vol. 127(1), pages 207-223, April.
    4. repec:cup:judgdm:v:15:y:2020:i:5:p:863-880 is not listed on IDEAS
    5. Sinha, Pankaj & Verma, Aniket & Shah, Purav & Singh, Jahnavi & Panwar, Utkarsh, 2020. "Prediction for the 2020 United States Presidential Election using Machine Learning Algorithm: Lasso Regression," MPRA Paper 103889, University Library of Munich, Germany, revised 31 Oct 2020.
    6. Andrew Gelman & Jessica Hullman & Christopher Wlezien & George Elliott Morris, 2020. "Information, incentives, and goals in election forecasts," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(5), pages 863-880, September.
    7. Pankaj Sinha & Aastha Sharma & Harsh Vardhan Singh, 2012. "Prediction For The 2012 United States Presidential Election Using Multiple Regression Model," Journal of Prediction Markets, University of Buckingham Press, vol. 6(2), pages 77-97.
    8. Kurrild-Klitgaard, Peter, 2019. "Var det fortsat ”the economy, stupid!” i 2016 og 2018? [Was it still "the economy, stupid!" in 2016 and 2018?]," MPRA Paper 97297, University Library of Munich, Germany.
    9. Sinha, Pankaj & Verma, Aniket & Shah, Purav & Singh, Jahnavi & Panwar, Utkarsh, 2020. "Prediction for the 2020 United States Presidential Election using Linear Regression Model," MPRA Paper 103890, University Library of Munich, Germany, revised 20 Oct 2020.
    10. Abramowitz, Alan I., 2008. "It's about time: Forecasting the 2008 presidential election with the time-for-change model," International Journal of Forecasting, Elsevier, vol. 24(2), pages 209-217.
    11. Hibbs Jr., Douglas A., 2004. "Voting and the Macroeconomy," Working Papers in Economics 144, University of Gothenburg, Department of Economics, revised 08 Apr 2006.
    12. Sinha, Pankaj & Thomas, Ashley Rose & Ranjan, Varun, 2012. "Forecasting 2012 United States Presidential election using Factor Analysis, Logit and Probit Models," MPRA Paper 42062, University Library of Munich, Germany.
    13. Sinha, Pankaj & verma, Kaushal & Biswas, Sumana & Tyagi, Shashank & Gogia, Shaily & Singh, Aakhyat & Kumar, Amit, 2024. "Modeling and forecasting US presidential election 2024," MPRA Paper 122319, University Library of Munich, Germany, revised 08 Oct 2024.
    14. Hibbs, Douglas A., 2007. "The Economy, the War in Iraq and the 2004 Presidential Election," MPRA Paper 15910, University Library of Munich, Germany.
    15. Hibbs, Douglas A, Jr, 2000. "Bread and Peace Voting in U.S. Presidential Elections," Public Choice, Springer, vol. 104(1-2), pages 149-180, July.
    16. Jeroen Klomp, 2020. "Election or Disaster Support?," Journal of Development Studies, Taylor & Francis Journals, vol. 56(1), pages 205-220, January.
    17. Janet Pack, 1987. "The political policy cycle: Presidential effort vs. presidential control," Public Choice, Springer, vol. 54(3), pages 231-259, August.
    18. Boryana Dimitrova, 2000. "An Empirical Model of Voting Behavior in the Bulgarian Parliamentary Elections of 1994," The American Economist, Sage Publications, vol. 44(2), pages 71-77, October.
    19. Paola Assael & Felipe Larraín, 1994. "El Ciclo Político-económico: Teoría, Evidencia y Extensión para una Economía Abierta," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 31(92), pages 87-114.
    20. Erik Snowberg & Justin Wolfers & Eric Zitzewitz, 2007. "Partisan Impacts on the Economy: Evidence from Prediction Markets and Close Elections," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(2), pages 807-829.
    21. Cáceres, Neila & Malone, Samuel W., 2015. "Optimal Weather Conditions, Economic Growth, and Political Transitions," World Development, Elsevier, vol. 66(C), pages 16-30.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:10470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.