IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/101527.html
   My bibliography  Save this paper

Neural model of conveyor type transport system

Author

Listed:
  • Pihnastyi, Oleh
  • Khodusov, Valery

Abstract

In this paper, a model of a transport conveyor system using a neural network is demonstrated. The analysis of the main parameters of modern conveyor systems is presented. The main models of the conveyor section, which are used for the design of control systems for flow parameters, are considered. The necessity of using neural networks in the design of conveyor transport control systems is substantiated. A review of conveyor models using a neural network is performed. The conditions of applicability of models using neural networks to describe conveyor systems are determined. A comparative analysis of the analytical model of the conveyor section and the model using the neural network is performed. The technique of forming a set of test data for the process of training a neural network is presented. The foundation for the formation of test data for learning neural network is an analytical model of the conveyor section. Using an analytical model allowed us to form a set of test data for transient dynamic modes of functioning of the transport system. The transport system is presented in the form of a directed graph without cycles. Analysis of the model using a neural network showed a high-quality relationship between the output flow for different conveyor sections of the transport system

Suggested Citation

  • Pihnastyi, Oleh & Khodusov, Valery, 2020. "Neural model of conveyor type transport system," MPRA Paper 101527, University Library of Munich, Germany, revised 01 May 2020.
  • Handle: RePEc:pra:mprapa:101527
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/101527/1/MPRA_paper_101527.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tebello Mathaba & Xiaohua Xia, 2015. "A Parametric Energy Model for Energy Management of Long Belt Conveyors," Energies, MDPI, vol. 8(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pihnastyi, Oleh & Kozhevnikov, Georgii, 2020. "Control of a Conveyor Based on a Neural Network," MPRA Paper 111950, University Library of Munich, Germany, revised 09 Oct 2021.
    2. Pihnastyi, Oleh & Chernіavska, Svіtlana, 2022. "Improvement of methods for description of a three-bunker collection conveyor," MPRA Paper 115529, University Library of Munich, Germany, revised 15 Oct 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pihnastyi, Oleh & Kozhevnikov, Georgii, 2020. "Control of a Conveyor Based on a Neural Network," MPRA Paper 111950, University Library of Munich, Germany, revised 09 Oct 2021.
    2. Zhang, Lijun & Chennells, Michael & Xia, Xiaohua, 2018. "A power dispatch model for a ferrochrome plant heat recovery cogeneration system," Applied Energy, Elsevier, vol. 227(C), pages 180-189.
    3. Pihnastyi, Oleh & Khodusov, Valery & Kotova, Anna, 2022. "The problem of combined optimal load flow control of main conveyor line," MPRA Paper 113787, University Library of Munich, Germany, revised 05 Jun 2022.
    4. Piotr Kulinowski & Piotr Kasza & Jacek Zarzycki, 2021. "Influence of Design Parameters of Idler Bearing Units on the Energy Consumption of a Belt Conveyor," Sustainability, MDPI, vol. 13(1), pages 1-13, January.
    5. Paweł Bogacz & Łukasz Cieślik & Dawid Osowski & Paweł Kochaj, 2022. "Analysis of the Scope for Reducing the Level of Energy Consumption of Crew Transport in an Underground Mining Plant Using a Conveyor Belt System Mining Plant," Energies, MDPI, vol. 15(20), pages 1-16, October.
    6. Jianhua Ji & Changyun Miao & Xianguo Li & Yi Liu, 2021. "Speed regulation strategy and algorithm for the variable-belt-speed energy-saving control of a belt conveyor based on the material flow rate," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-15, February.
    7. Chunyu Yang & Jinhao Liu & Heng Li & Linna Zhou, 2018. "Energy Modeling and Parameter Identification of Dual-Motor-Driven Belt Conveyors without Speed Sensors," Energies, MDPI, vol. 11(12), pages 1-17, November.
    8. Mirosław Bajda & Monika Hardygóra, 2021. "Analysis of the Influence of the Type of Belt on the Energy Consumption of Transport Processes in a Belt Conveyor," Energies, MDPI, vol. 14(19), pages 1-17, September.
    9. Pihnastyi, Oleh & Kozhevnikov, Georgii & Ivanovska, Olha, 2022. "Maxwell-Element Model for Describing Conveyor Belt Stresses," MPRA Paper 112560, University Library of Munich, Germany, revised 01 Jan 2022.
    10. He, Daijie & Pang, Yusong & Lodewijks, Gabriel, 2017. "Green operations of belt conveyors by means of speed control," Applied Energy, Elsevier, vol. 188(C), pages 330-341.
    11. Piotr Kulinowski & Piotr Kasza & Jacek Zarzycki, 2022. "Methods of Testing of Roller Rotational Resistance in Aspect of Energy Consumption of a Belt Conveyor," Energies, MDPI, vol. 16(1), pages 1-12, December.
    12. Pihnastyi, Oleh & Khodusov, Valery & Subbotin, Sergey, 2020. "Linear Regression Model of the Conveyor Type Transport System," MPRA Paper 103881, University Library of Munich, Germany, revised 26 Sep 2020.

    More about this item

    Keywords

    conveyor; PDE– model; distributed system; transport delay;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:101527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.