IDEAS home Printed from https://ideas.repec.org/p/par/dipeco/2008-me02.html
   My bibliography  Save this paper

An improved two-step regularization scheme for spot volatility estimation

Author

Listed:
  • S. Sanfelici
  • S. Ogawa

Abstract

We are concerned with the problem of parameter estimation in Finance, namely the estimation of the spot volatility in the presence of the so-called microstructure noise. In [16] a scheme based on the technique of multi-step regularization was presented. It was shown that this scheme can work in a real-time manner. However, the main drawback of this scheme is that it needs a lot of observation data. The aim of the present paper is to introduce an improvement of the scheme such that the modified estimator can work more efficiently and with a data set of smaller size. The technical aspects of implementation of the scheme and its performance on simulated data are analyzed. The proposed scheme is tested against other estimators, namely a realized volatility type estimator, the Fourier estimator and two kernel estimators.

Suggested Citation

  • S. Sanfelici & S. Ogawa, 2008. "An improved two-step regularization scheme for spot volatility estimation," Economics Department Working Papers 2008-ME02, Department of Economics, Parma University (Italy).
  • Handle: RePEc:par:dipeco:2008-me02
    as

    Download full text from publisher

    File URL: http://swrwebeco.econ.unipr.it/RePEc/pdf/IV_2008-02.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles S. Bos & Paweł Janus & Siem Jan Koopman, 2012. "Spot Variance Path Estimation and Its Application to High-Frequency Jump Testing," Journal of Financial Econometrics, Oxford University Press, vol. 10(2), pages 354-389, 2012 06.
    2. Müller, Hans-Georg & Sen, Rituparna & Stadtmüller, Ulrich, 2011. "Functional data analysis for volatility," Journal of Econometrics, Elsevier, vol. 165(2), pages 233-245.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006. "Limit Theorems For Bipower Variation In Financial Econometrics," Econometric Theory, Cambridge University Press, vol. 22(4), pages 677-719, August.
    2. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    3. Renò, Roberto, 2008. "Nonparametric Estimation Of The Diffusion Coefficient Of Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1174-1206, October.
    4. Alva, Kenedy, 2009. "Modelling intra-daily volatility by functional data analysis: an empirical application to the spanish stock market," DES - Working Papers. Statistics and Econometrics. WS ws092809, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Bent Jesper Christensen & Morten Ø. Nielsen, 2005. "The Implied-realized Volatility Relation With Jumps In Underlying Asset Prices," Working Paper 1186, Economics Department, Queen's University.
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    7. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.
    8. Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
    9. Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007. "The Effect of Long Memory in Volatility on Stock Market Fluctuations," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 684-700, November.
    10. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    11. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten Ørregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.
    12. Mancino, M.E. & Sanfelici, S., 2008. "Robustness of Fourier estimator of integrated volatility in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2966-2989, February.
    13. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Estimation of Long Memory in Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 785-814, October.
    14. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    15. Curato, Imma Valentina & Mancino, Maria Elvira & Recchioni, Maria Cristina, 2018. "Spot volatility estimation using the Laplace transform," Econometrics and Statistics, Elsevier, vol. 6(C), pages 22-43.
    16. Maria Cristina Recchioni & Gabriele Tedeschi, 2016. "From bond yield to macroeconomic instability: The effect of negative interest rates," Working Papers 2016/06, Economics Department, Universitat Jaume I, Castellón (Spain).
    17. Jozef Barunik & Lukas Vacha, 2015. "Realized wavelet-based estimation of integrated variance and jumps in the presence of noise," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1347-1364, August.
    18. Recchioni, Maria Cristina & Tedeschi, Gabriele & Gallegati, Mauro, 2015. "A calibration procedure for analyzing stock price dynamics in an agent-based framework," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 1-25.
    19. A. Khalifa & S. Hammoudeh & E. Otranto & S. Ramchander, 2012. "Volatility Transmission across Currency, Commodity and Equity Markets under Multi-Chain Regime Switching: Implications for Hedging and Portfolio Allocation," Working Paper CRENoS 201214, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    20. Ahmed A. A. Khalifa & Hong Miao & Sanjay Ramchander, 2011. "Return distributions and volatility forecasting in metal futures markets: Evidence from gold, silver, and copper," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(1), pages 55-80, January.

    More about this item

    Keywords

    Spot volatility; Nonparametric estimation; Multi-step regularization; Microstructure;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:par:dipeco:2008-me02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Lasagni (email available below). General contact details of provider: https://edirc.repec.org/data/feparit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.