IDEAS home Printed from https://ideas.repec.org/p/oxf/wpaper/907.html
   My bibliography  Save this paper

Adaptive Targeted Infectious Disease Testing

Author

Listed:
  • Maximilian Kasy
  • Alex Teytelboym

Abstract

We show how to efficiently use costly testing resources in an epidemic, when testing outcomes can be used to make quarantine decisions. If the cost of false quarantine and false release exceed the cost of testing, the optimal myopic testing policy targets individuals with an intermediate likelihood of being infected. A high cost of false release means that testing is optimal for individuals with a low probability of infection, and a high cost of false quarantine means that testing is optimal for individuals with a high probability of infection. If individuals arrive over time, the policy-maker faces a dynamic tradeoff: using tests for individuals for whom testing yields the maximum immediate beneï¬ t vs. spreading out testing capacity across the population to learn prevalence rates thereby beneï¬ ting later individuals. We describe a simple policy that is nearly optimal from a dynamic perspective. We briefly discuss practical aspects of implementing our proposed policy, including imperfect testing technology, appropriate choice of prior, and non-stationarity of the prevalence rate.

Suggested Citation

  • Maximilian Kasy & Alex Teytelboym, 2020. "Adaptive Targeted Infectious Disease Testing," Economics Series Working Papers 907, University of Oxford, Department of Economics.
  • Handle: RePEc:oxf:wpaper:907
    as

    Download full text from publisher

    File URL: https://ora.ox.ac.uk/objects/uuid:a77fcf47-ff37-4f27-b5a1-b890575ef699
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Maximilian Kasy & Anja Sautmann, 2021. "Adaptive Treatment Assignment in Experiments for Policy Choice," Econometrica, Econometric Society, vol. 89(1), pages 113-132, January.
    2. Maximilian Kasy & Alexander Teytelboym, 2020. "Adaptive Combinatorial Allocation," Papers 2011.02330, arXiv.org.
    3. William V. Padula, 2020. "Why Only Test Symptomatic Patients? Consider Random Screening for COVID-19," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 333-334, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Whitmeyer, 2021. "An imperfect test for a virus can Be worse than No test at all," Health Economics, John Wiley & Sons, Ltd., vol. 30(6), pages 1347-1360, June.
    2. Sanjay Jain & Jónas Oddur Jónasson & Jean Pauphilet & Kamalini Ramdas, 2023. "Robust combination testing: methods and application to COVID-19 detection," Economics Series Working Papers 1009, University of Oxford, Department of Economics.
    3. Daron Acemoglu & Ali Makhdoumi & Azarakhsh Malekian & Asuman Ozdaglar, 2024. "Testing, Voluntary Social Distancing, and the Spread of an Infection," Operations Research, INFORMS, vol. 72(2), pages 533-548, March.
    4. Lipnowski, Elliot & Ravid, Doron, 2021. "Pooled testing for quarantine decisions," Journal of Economic Theory, Elsevier, vol. 198(C).
    5. Joshua S. Gans, 2022. "Test sensitivity for infection versus infectiousness of SARS‐CoV‐2," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 1880-1887, September.
    6. Masashige Hamano & Munechika Katayama & So Kubota, 2020. "COVID-19 Misperception and Macroeconomy," Working Papers 2016, Waseda University, Faculty of Political Science and Economics.
    7. Bahety, Girija & Bauhoff, Sebastian & Patel, Dev & Potter, James, 2021. "Texts don’t nudge: An adaptive trial to prevent the spread of COVID-19 in India," Journal of Development Economics, Elsevier, vol. 153(C).
    8. Ely, Jeffrey & Galeotti, Andrea & Jann, Ole & Steiner, Jakub, 2021. "Optimal test allocation," Journal of Economic Theory, Elsevier, vol. 193(C).
    9. Joren Raymenants & Caspar Geenen & Jonathan Thibaut & Klaas Nelissen & Sarah Gorissen & Emmanuel Andre, 2022. "Empirical evidence on the efficiency of backward contact tracing in COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Bakker, Hannah & Bindewald, Viktor & Dunke, Fabian & Nickel, Stefan, 2023. "Logistics for diagnostic testing: An adaptive decision-support framework," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1120-1133.
    11. Francesco Flaviano Russo, 2020. "Testing Policies During an Epidemic," CSEF Working Papers 591, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linus Nyiwul, 2021. "Epidemic Control and Resource Allocation: Approaches and Implications for the Management of COVID-19," Studies in Microeconomics, , vol. 9(2), pages 283-305, December.
    2. A Stefano Caria & Grant Gordon & Maximilian Kasy & Simon Quinn & Soha Osman Shami & Alexander Teytelboym, 2024. "An Adaptive Targeted Field Experiment: Job Search Assistance for Refugees in Jordan," Journal of the European Economic Association, European Economic Association, vol. 22(2), pages 781-836.
    3. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    4. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    5. Martino Banchio & Giacomo Mantegazza, 2022. "Artificial Intelligence and Spontaneous Collusion," Papers 2202.05946, arXiv.org, revised Sep 2023.
    6. Bahety, Girija & Bauhoff, Sebastian & Patel, Dev & Potter, James, 2021. "Texts don’t nudge: An adaptive trial to prevent the spread of COVID-19 in India," Journal of Development Economics, Elsevier, vol. 153(C).
    7. Xiaoxue Sherry Gao & Glenn W. Harrison & Rusty Tchernis, 2020. "Behavioral Welfare Economics and Risk Preferences: A Bayesian Approach," NBER Working Papers 27685, National Bureau of Economic Research, Inc.
    8. Xiaoxue Sherry Gao & Glenn W. Harrison & Rusty Tchernis, 2023. "Behavioral welfare economics and risk preferences: a Bayesian approach," Experimental Economics, Springer;Economic Science Association, vol. 26(2), pages 273-303, April.
    9. Keisuke Hirano & Jack R. Porter, 2023. "Asymptotic Representations for Sequential Decisions, Adaptive Experiments, and Batched Bandits," Papers 2302.03117, arXiv.org.
    10. Nicolo Cesa-Bianchi & Roberto Colomboni & Maximilian Kasy, 2023. "Adaptive maximization of social welfare," Papers 2310.09597, arXiv.org, revised Jul 2024.
    11. Masahiro Kato, 2024. "Adaptive Generalized Neyman Allocation: Local Asymptotic Minimax Optimal Best Arm Identification," Papers 2405.19317, arXiv.org.
    12. Julia Höhler & Jesús Barreiro‐Hurlé & Mikołaj Czajkowski & François J. Dessart & Paul J. Ferraro & Tongzhe Li & Kent D. Messer & Leah Palm‐Forster & Mette Termansen & Fabian Thomas & Katarzyna Zagórsk, 2024. "Perspectives on stakeholder participation in the design of economic experiments for agricultural policymaking: Pros, cons, and twelve recommendations for researchers," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 46(1), pages 338-359, March.
    13. Karun Adusumilli, 2021. "Risk and optimal policies in bandit experiments," Papers 2112.06363, arXiv.org, revised Jan 2024.
    14. Caio Waisman & Harikesh S. Nair & Carlos Carrion, 2019. "Online Causal Inference for Advertising in Real-Time Bidding Auctions," Papers 1908.08600, arXiv.org, revised Feb 2024.
    15. Battistin, Erich & De Nadai, Michele & Krishnan, Nandini, 2020. "The Insights and Illusions of Consumption Measurements," IZA Discussion Papers 13222, Institute of Labor Economics (IZA).
    16. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    17. Arthur Charpentier & Romuald Elie & Carl Remlinger, 2020. "Reinforcement Learning in Economics and Finance," Papers 2003.10014, arXiv.org.
    18. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    19. Qian Qi, 2023. "Artificial Intelligence and Dual Contract," Papers 2303.12350, arXiv.org, revised Jun 2024.
    20. Masahiro Kato, 2023. "Locally Optimal Fixed-Budget Best Arm Identification in Two-Armed Gaussian Bandits with Unknown Variances," Papers 2312.12741, arXiv.org, revised Mar 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Pouliquen (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.