IDEAS home Printed from https://ideas.repec.org/p/oxf/wpaper/2007-fe-03.html
   My bibliography  Save this paper

A Note on the Central Limit Theorem for Bipower Variation of General Functions

Author

Listed:
  • Silja Kinnebrock
  • Mark Podolskij
  • Ruhr-Universitat Bochum

Abstract

In this paper we present the central limit theorem for general functions of the increments of Brownian semimartingales. This provides a natural extension of the results derived in Barndorff-Nielsen, Graversen, Jacod, Podolskij and Shephard (2006), who showed the central limit theorem for even functions. We prove an infeasible central limit theorem for general functions and state some assumptions under which a feasible version of our results can be obtained. Finally, we present some examples from the literature to which our theory can be applied.

Suggested Citation

  • Silja Kinnebrock & Mark Podolskij & Ruhr-Universitat Bochum, 2007. "A Note on the Central Limit Theorem for Bipower Variation of General Functions," Economics Series Working Papers 2007-FE-03, University of Oxford, Department of Economics.
  • Handle: RePEc:oxf:wpaper:2007-fe-03
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk - realised semivariance," OFRC Working Papers Series 2008fe01, Oxford Financial Research Centre.
    2. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
    3. Neil Shephard & Silja Kinnebrock & Ole E. Barndorff-Neilsen, 2008. "Measuring downside risk - realised semivariance," Economics Series Working Papers 382, University of Oxford, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:2007-fe-03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Pouliquen (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.