IDEAS home Printed from https://ideas.repec.org/a/aic/revebs/y2012i10asanduluim.html
   My bibliography  Save this article

A Multi-Horizon Comparison Of Volatility Forecasts: An Application To Stock Options Traded At Euronext Exchange Amsterdam

Author

Listed:
  • Mircea ASANDULUI

    (Alexandru Ioan Cuza University of Iasi, Faculty of Economics and Business Administration, Iasi, Romania)

Abstract

In this paper we analyze the volatility of the 3 most traded stock options at NYSE Euronext Exchange Amsterdam, between January 2009 and May 2011, in order to identify the best models that explain the evolution of options volatility. Based on the analysis of the phenomena, we determine models that describe the evolution of the volatility and with these models we realize forecasts. We used classical models, such as EWMA, but also modern ones represented by heteroscedastic models. Forecasted values are then compared with the real ones. By calculating the differences, we determine the forecast errors, based on which we identify models that provide the most accurate forecasts and models that provide the worst forecasts.

Suggested Citation

  • Mircea ASANDULUI, 2012. "A Multi-Horizon Comparison Of Volatility Forecasts: An Application To Stock Options Traded At Euronext Exchange Amsterdam," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 10, pages 179-190, December.
  • Handle: RePEc:aic:revebs:y:2012:i:10:asanduluim
    as

    Download full text from publisher

    File URL: http://rebs.feaa.uaic.ro/articles/pdfs/149.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taylor, James W., 2004. "Volatility forecasting with smooth transition exponential smoothing," International Journal of Forecasting, Elsevier, vol. 20(2), pages 273-286.
    2. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    3. Ederington, Louis & Guan, Wei, 2005. "The information frown in option prices," Journal of Banking & Finance, Elsevier, vol. 29(6), pages 1429-1457, June.
    4. Dimson, Elroy & Marsh, Paul, 1990. "Volatility forecasting without data-snooping," Journal of Banking & Finance, Elsevier, vol. 14(2-3), pages 399-421, August.
    5. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
    6. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    7. Mills,Terence C. & Markellos,Raphael N., 2008. "The Econometric Modelling of Financial Time Series," Cambridge Books, Cambridge University Press, number 9780521710091.
    8. Mills,Terence C. & Markellos,Raphael N., 2008. "The Econometric Modelling of Financial Time Series," Cambridge Books, Cambridge University Press, number 9780521883818.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. James W. Taylor, 2004. "Smooth transition exponential smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 385-404.
    11. Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Beckers, Stan, 1981. "Standard deviations implied in option prices as predictors of future stock price variability," Journal of Banking & Finance, Elsevier, vol. 5(3), pages 363-381, September.
    14. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    15. Taylor, Stephen J., 1987. "Forecasting the volatility of currency exchange rates," International Journal of Forecasting, Elsevier, vol. 3(1), pages 159-170.
    16. Geoffrey F. Loudon & Wing H. Watt & Pradeep K. Yadav, 2000. "An empirical analysis of alternative parametric ARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 117-136.
    17. Yu, Jun, 1999. "Forecasting Volatility in the New Zealand Stock Market," Working Papers 175, Department of Economics, The University of Auckland.
    18. Amin, Kaushik I & Ng, Victor K, 1997. "Inferring Future Volatility from the Information in Implied Volatility in Eurodollar Options: A New Approach," The Review of Financial Studies, Society for Financial Studies, vol. 10(2), pages 333-367.
    19. Granger,Clive W. J., 1999. "Empirical Modeling in Economics," Cambridge Books, Cambridge University Press, number 9780521778251, October.
    20. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    21. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viorica CHIRILA & Ciprian CHIRILA, 2015. "The Steel European Stock Market Efficiency," CES Working Papers, Centre for European Studies, Alexandru Ioan Cuza University, vol. 7(4), pages 873-880, December.
    2. Mihaela SIMIONESCU, 2014. "Improving The Inflation Rate Forecasts Of Romanian Experts Using A Fixed-Effects Models Approach," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 13, pages 87-102, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mircea ASANDULUI, 2012. "On forecasting stock options volatility: evidence from London international financial futures and options exchange," Anale. Seria Stiinte Economice. Timisoara, Faculty of Economics, Tibiscus University in Timisoara, vol. 0, pages 505-511, May.
    2. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    3. Ercan Balaban & Asli Bayar & Robert Faff, 2006. "Forecasting stock market volatility: Further international evidence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(2), pages 171-188.
    4. Chuang, Wen-I & Huang, Teng-Ching & Lin, Bing-Huei, 2013. "Predicting volatility using the Markov-switching multifractal model: Evidence from S&P 100 index and equity options," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 168-187.
    5. Liu, Hung-Chun & Chiang, Shu-Mei & Cheng, Nick Ying-Pin, 2012. "Forecasting the volatility of S&P depositary receipts using GARCH-type models under intraday range-based and return-based proxy measures," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 78-91.
    6. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    7. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    8. Szakmary, Andrew & Ors, Evren & Kyoung Kim, Jin & Davidson, Wallace III, 2003. "The predictive power of implied volatility: Evidence from 35 futures markets," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2151-2175, November.
    9. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    10. Shiyi Chen & Wolfgang K. Härdle & Kiho Jeong, 2010. "Forecasting volatility with support vector machine-based GARCH model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 406-433.
    11. Eugenie Hol & Siem Jan Koopman, 2000. "Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility," Tinbergen Institute Discussion Papers 00-104/4, Tinbergen Institute.
    12. Neely, Christopher J., 2009. "Forecasting foreign exchange volatility: Why is implied volatility biased and inefficient? And does it matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 188-205, February.
    13. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    14. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
    15. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2019. "Forecasting the KOSPI200 spot volatility using various volatility measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 156-166.
    16. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    17. Vipul Kumar Singh, 2013. "Effectiveness of volatility models in option pricing: evidence from recent financial upheavals," Journal of Advances in Management Research, Emerald Group Publishing Limited, vol. 10(3), pages 352-375, October.
    18. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    19. Jungmu Kim & Yuen Jung Park, 2020. "Predictability of OTC Option Volatility for Future Stock Volatility," Sustainability, MDPI, vol. 12(12), pages 1-23, June.
    20. Wong, Woon K. & Tu, Anthony H., 2009. "Market imperfections and the information content of implied and realized volatility," Pacific-Basin Finance Journal, Elsevier, vol. 17(1), pages 58-79, January.

    More about this item

    Keywords

    volatility; Options; forecast; EWMA; heteroscedastic models;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aic:revebs:y:2012:i:10:asanduluim. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sireteanu Napoleon-Alexandru (email available below). General contact details of provider: https://edirc.repec.org/data/feaicro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.