IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/xz4t7.html
   My bibliography  Save this paper

Promoting Urban Farming for Creating Sustainable Cities in Nepal

Author

Listed:
  • Bhattarai, Keshav
  • Adhikari, Ambika P.

    (Institute for Integrated Development Studies (IIDS))

Abstract

This paper responds to the research question, “can urban farming in Nepal help create sustainable cities?” Especially after the COVID-19 pandemic, urban residents have begun to realize that food transported from long distances is not always reliable. Urban farming can help produce fresh food locally and help urban residents become self-reliant by engaging in healthy eating habits and practicing sustainable agricultural techniques in food-desert areas, while creating a positive impact on the environment through regenerative agricultural methods. In doing so, urban farms can help the growers save on food expenditures and even earn some additional income, while also improving air quality and minimizing the effects of urban heat islands. This practice also helps reduce greenhouse gases through plant carbon use efficiency (CUE), as vegetation carbon dynamics (VCD) can be adjusted while supporting the circular economy. As urban lands command higher prices than agricultural land, urban farming usually happens on residential yards, roofs, balconies, community gardens, and dedicated areas in public parks. Rainwater harvesting and redirecting can help irrigate urban farms, which can be part of rain gardens. The national census of 2021 identified that 66% of Nepal’s population lives in urban areas. However, the World Bank (2018) showed that only 21 of Nepal’s population was projected to live in urban areas in 2021. It is not debatable that the urbanization process in Nepal is on the rise. Thus, urban agriculture can play an important role in supplementing residents’ food needs. Many cities in Nepal have already successfully adapted to urban farming wherein residents grow food on their building sites, balconies, and rooftop, often growing plants in pots, vases, and other types of containers. The UN-Habitat, with the support of the European Union and local agencies, published a rooftop farming training manual (2014), showing the feasibility of urban farming in Nepal. This paper discusses how public-private partnership (PPP) can promote urban agriculture and make the process more effective and attractive to urban-farming households. It also analyzes how a PPP approach also facilitates the use of better technology, advisory support, and use of research extension activities. This paper draws on a literature review, uses remote-sensing imagery data and data from National Census Nepal 2021, and the authors’ professional experiences related to best practices in the areas to analyze the benefits and challenges related to urban farming both in Nepal and Arizona, USA. The paper provides recommendations for Nepali cities to maximize the benefit provided by urban farming.

Suggested Citation

  • Bhattarai, Keshav & Adhikari, Ambika P., 2023. "Promoting Urban Farming for Creating Sustainable Cities in Nepal," SocArXiv xz4t7, Center for Open Science.
  • Handle: RePEc:osf:socarx:xz4t7
    DOI: 10.31219/osf.io/xz4t7
    as

    Download full text from publisher

    File URL: https://osf.io/download/6461ae577b916a3eb12997f1/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/xz4t7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Fazle Rabbi & Tarek Ben Hassen & Hamid El Bilali & Dele Raheem & António Raposo, 2023. "Food Security Challenges in Europe in the Context of the Prolonged Russian–Ukrainian Conflict," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    2. A. P. Ballantyne & C. B. Alden & J. B. Miller & P. P. Tans & J. W. C. White, 2012. "Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years," Nature, Nature, vol. 488(7409), pages 70-72, August.
    3. Marco Ferroni & Paul Castle, 2011. "Public-Private Partnerships and Sustainable Agricultural Development," Sustainability, MDPI, vol. 3(7), pages 1-10, July.
    4. Midmore, D. J. & Jansen, H. G. P., 2003. "Supplying vegetables to Asian cities: is there a case for peri-urban production?," Food Policy, Elsevier, vol. 28(1), pages 13-27, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhattarai, Keshav & Adhikari, Ambika P. & Gautam, Shiva, 2023. "State of Urbanization in Nepal: The Official Definition and Reality," SocArXiv gbwvk, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas Bamegne Nambie & Philomena Dadzie & Dorcas Oye Haywood-Dadzie, 2023. "Measuring the Effect of Income Inequality, Financial Inclusion, Investment, and Unemployment, on Economic Growth in Africa: A Moderating Role of Digital Financial Technology," International Journal of Economics and Financial Issues, Econjournals, vol. 13(4), pages 111-124, July.
    2. Tiéfigué Pierrette Coulibaly & Jianguo Du & Daniel Diakité & Olivier Joseph Abban & Elvis Kouakou, 2021. "A Proposed Conceptual Framework on the Adoption of Sustainable Agricultural Practices: The Role of Network Contact Frequency and Institutional Trust," Sustainability, MDPI, vol. 13(4), pages 1-12, February.
    3. Mariusz Hamulczuk & Karolina Pawlak & Joanna Stefańczyk & Jarosław Gołębiewski, 2023. "Agri-Food Supply and Retail Food Prices during the Russia–Ukraine Conflict’s Early Stage: Implications for Food Security," Agriculture, MDPI, vol. 13(11), pages 1-17, November.
    4. Agarwal, Vernika & Malhotra, Snigdha & Dagar, Vishal & M. R, Pavithra, 2023. "Coping with public-private partnership issues: A path forward to sustainable agriculture," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    5. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Francisco, Sergio R. & Ali, Mubarik, 2006. "Resource allocation tradeoffs in Manila's peri-urban vegetable production systems: An application of multiple objective programming," Agricultural Systems, Elsevier, vol. 87(2), pages 147-168, February.
    7. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Chimhowu, Admos, 2013. "Aid for Agriculture and Rural Development: A Changing Landscape with New Players and Challenges," WIDER Working Paper Series 014, World Institute for Development Economic Research (UNU-WIDER).
    9. Rebecca Peters & Jürgen Berlekamp & Ana Lucía & Vittoria Stefani & Klement Tockner & Christiane Zarfl, 2021. "Integrated Impact Assessment for Sustainable Hydropower Planning in the Vjosa Catchment (Greece, Albania)," Sustainability, MDPI, vol. 13(3), pages 1-18, February.
    10. Oksana Lazor & Oleh Lazor & Nataliia Lutska & Ivan Krykhovetskyi & Kateryna Maistrenko & Agnes Olkova-Mykhnytska, 2022. "Formation and Implementation of Public-Private Partnership Projects in the Agricultural Sector," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 8(4), pages 266-274, 10-2022.
    11. Vagneron, Isabelle, 2007. "Economic appraisal of profitability and sustainability of peri-urban agriculture in Bangkok," Ecological Economics, Elsevier, vol. 61(2-3), pages 516-529, March.
    12. Srinet, Ritika & Nandy, Subrata & Patel, N.R. & Padalia, Hitendra & Watham, Taibanganba & Singh, Sanjeev K. & Chauhan, Prakash, 2023. "Simulation of forest carbon fluxes by integrating remote sensing data into biome-BGC model," Ecological Modelling, Elsevier, vol. 475(C).
    13. Pires, José C.M., 2017. "COP21: The algae opportunity?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 867-877.
    14. Kalyan Annamalai, 2024. "Breathing Planet Earth: Analysis of Keeling’s Data on CO 2 and O 2 with Respiratory Quotient (RQ), Part I: Global Respiratory Quotient (RQ Glob ) of Earth," Energies, MDPI, vol. 17(2), pages 1-35, January.
    15. Mikkel Bennedsen & Eric Hillebrand & Siem Jan Koopman, 2024. "A regression-based approach to the CO2 airborne fraction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Yanbo Li & Jinming Hu & Weijiao Di & Liyun Zhang & Daniel Oscar Suman & Hong Zhu, 2019. "Success Factors of Irrigation Projects Based on A "Public–Private Partnership" Model in A Mountainous Area: A Case Study in the Nujiang River Valley, China," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
    17. Jing Du & Hongyue Wu & Ruoyu Jin, 2019. "Capital Structure of Public–Private Partnership Projects: A Sustainability Perspective," Sustainability, MDPI, vol. 11(13), pages 1-25, June.
    18. A. Rashedi & Taslima Khanam & Mirjam Jonkman, 2020. "On Reduced Consumption of Fossil Fuels in 2020 and Its Consequences in Global Environment and Exergy Demand," Energies, MDPI, vol. 13(22), pages 1-14, November.
    19. Andreea-Emanuela Dragoi, 2023. "Quo Vadis the Common Agricultural Policy amid Tomorrow’s Challenges?," Global Economic Observer, "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences;Institute for World Economy of the Romanian Academy, vol. 11(1), pages 24-31, May.
    20. Ngawang Chhogyel & Lalit Kumar & Yadunath Bajgai, 2020. "Consequences of Climate Change Impacts and Incidences of Extreme Weather Events in Relation to Crop Production in Bhutan," Sustainability, MDPI, vol. 12(10), pages 1-18, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:xz4t7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.