Author
Listed:
- Daoud, Adel
- Jordan, Felipe
- Sharma, Makkunda
- Johansson, Fredrik
- Dubhashi, Devdatt
- Paul, Sourabh
- Banerjee, Subhashis
Abstract
The application of deep learning methods to survey human development in remote areas with satellite imagery at high temporal frequency can significantly enhance our understanding of spatial and temporal patterns in human development. Current applications have focused their efforts in predicting a narrow set of asset-based measurements of human well-being within a limited group of African countries. Here, we leverage georeferenced village-level census data from across 30 percent of the landmass of India to train a deep-neural network that predicts 16 variables representing material conditions from annual composites of Landsat 7 imagery. The census-based model is used as a feature extractor to train another network that predicts an even larger set of developmental variables (over 90 variables) included in two rounds of the National Family Health Survey (NFHS) survey. The census-based model outperforms the current standard in the literature, night-time-luminosity-based models, as a feature extractor for several of these large set of variables. To extend the temporal scope of the models, we suggest a distribution-transformation procedure to estimate outcomes over time and space in India. Our procedure achieves levels of accuracy in the R-square of 0.92 to 0.60 for 21 development outcomes, 0.59 to 0.30 for 25 outcomes, and 0.29 to 0.00 for 28 outcomes, and 19 outcomes had negative R-square. Overall, the results show that combining satellite data with Indian Census data unlocks rich information for training deep learning models that track human development at an unprecedented geographical and temporal definition.
Suggested Citation
Daoud, Adel & Jordan, Felipe & Sharma, Makkunda & Johansson, Fredrik & Dubhashi, Devdatt & Paul, Sourabh & Banerjee, Subhashis, 2021.
"Using satellites and artificial intelligence to measure health and material-living standards in India,"
SocArXiv
vf28g_v1, Center for Open Science.
Handle:
RePEc:osf:socarx:vf28g_v1
DOI: 10.31219/osf.io/vf28g_v1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:vf28g_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.