IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/sx9um.html
   My bibliography  Save this paper

Explanatory Item Response Models for Dyadic Data from Multiple Groups

Author

Listed:
  • Murphy, James

Abstract

Like other quantitative social scientists, network researchers benefit from pooling information from multiple observed variables to infer underlying (latent) attributes or social processes. Appropriate network data for this task is increasingly available. The inherent dependencies in relational data, however, pose unique challenges. This is especially true for those involved in the ascendant tasks of cross-network comparisons or multilevel network analysis. The author draws on item response theory and multilevel (mixed effects) modeling to propose a methodological approach that accounts for these dependencies and allows the analyst to model variation of latent dyadic traits across relations, actors, and groups precisely and parsimoniously. Examples demonstrate the approach’s utility for three important research areas: tie strength in adolescent friendships, group differences in how discussing personal problems relates to tie strength, and the analysis of multiple relations.

Suggested Citation

  • Murphy, James, 2020. "Explanatory Item Response Models for Dyadic Data from Multiple Groups," SocArXiv sx9um, Center for Open Science.
  • Handle: RePEc:osf:socarx:sx9um
    DOI: 10.31219/osf.io/sx9um
    as

    Download full text from publisher

    File URL: https://osf.io/download/5ebc47359f896200844d84bf/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/sx9um?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    2. Lewandowski, Daniel & Kurowicka, Dorota & Joe, Harry, 2009. "Generating random correlation matrices based on vines and extended onion method," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1989-2001, October.
    3. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    4. Jean-Paul Fox & Cees Glas, 2001. "Bayesian estimation of a multilevel IRT model using gibbs sampling," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 271-288, June.
    5. Peter D. Hoff, 2005. "Bilinear Mixed-Effects Models for Dyadic Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 286-295, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    2. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    3. Linda S. L. Tan, 2021. "Use of model reparametrization to improve variational Bayes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 30-57, February.
    4. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    5. Matias Quiroz & Mattias Villani & Robert Kohn & Minh-Ngoc Tran & Khue-Dung Dang, 2018. "Subsampling MCMC - an Introduction for the Survey Statistician," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 33-69, December.
    6. Dang, Khue-Dung & Quiroz, Matias & Kohn, Robert & Tran, Minh-Ngoc & Villani, Mattias, 2019. "Hamiltonian Monte Carlo with Energy Conserving Subsampling," Working Paper Series 372, Sveriges Riksbank (Central Bank of Sweden).
    7. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    8. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    9. Guowen Huang & Patrick E. Brown & Sze Hang Fu & Hwashin Hyun Shin, 2022. "Daily mortality/morbidity and air quality: Using multivariate time series with seasonally varying covariances," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 148-174, January.
    10. Selma Metzner & Gerd Wübbeler & Clemens Elster, 2019. "Approximate large-scale Bayesian spatial modeling with application to quantitative magnetic resonance imaging," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 333-355, September.
    11. Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
    12. Rodrigues, Filipe, 2022. "Scaling Bayesian inference of mixed multinomial logit models to large datasets," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 1-17.
    13. Terrence D. Jorgensen & Aditi M. Bhangale & Yves Rosseel, 2024. "Two-Stage Limited-Information Estimation for Structural Equation Models of Round-Robin Variables," Stats, MDPI, vol. 7(1), pages 1-34, February.
    14. Minjeong Jeon & Ick Hoon Jin & Michael Schweinberger & Samuel Baugh, 2021. "Mapping Unobserved Item–Respondent Interactions: A Latent Space Item Response Model with Interaction Map," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 378-403, June.
    15. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    16. Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    17. Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
    18. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    19. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    20. Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:sx9um. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.