IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/s6q3m_v1.html
   My bibliography  Save this paper

Drivers of municipal solid waste management cost based on cost models inherent to sorted and unsorted waste

Author

Listed:
  • Di Foggia, Giacomo

    (University of Milano-Bicocca)

  • Beccarello, Massimo

Abstract

After having divided waste management cost in its cost items, we focus on how well-known exogenous and endogenous drivers impact on such cost items. To this end, we collected empirical data of 6,616 Italian municipalities for a two-year period. We develop four regression-based models to analyze the data according to cost items. Models are also reiterated using different data normalization: cost per ton of waste or waste per capita. Besides exogenous determiners of cost, such as altitude, population density, and coastal zone, results refer to both unsorted and sorted waste management cost items. In this respect economies of scale are confirmed along with the critical role of adequate waste facilities that play a remarkable role in cost minimization. Policymakers and regulators may benefit from such results when it comes to define allowed revenues and design the scope of municipal solid waste regulation.

Suggested Citation

  • Di Foggia, Giacomo & Beccarello, Massimo, 2021. "Drivers of municipal solid waste management cost based on cost models inherent to sorted and unsorted waste," SocArXiv s6q3m_v1, Center for Open Science.
  • Handle: RePEc:osf:socarx:s6q3m_v1
    DOI: 10.31219/osf.io/s6q3m_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/60225a4973c9fe004e077c19/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/s6q3m_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bohm, Robert A. & Folz, David H. & Kinnaman, Thomas C. & Podolsky, Michael J., 2010. "The costs of municipal waste and recycling programs," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 864-871.
    2. Makarichi, Luke & Jutidamrongphan, Warangkana & Techato, Kua-anan, 2018. "The evolution of waste-to-energy incineration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 812-821.
    3. Di Foggia, Giacomo & Beccarello, Massimo, 2020. "The impact of a gain-sharing cost-reflective tariff on waste management cost under incentive regulation: The Italian case," SocArXiv cvb7e_v1, Center for Open Science.
    4. Malinauskaite, J. & Jouhara, H. & Czajczyńska, D. & Stanchev, P. & Katsou, E. & Rostkowski, P. & Thorne, R.J. & Colón, J. & Ponsá, S. & Al-Mansour, F. & Anguilano, L. & Krzyżyńska, R. & López, I.C. & , 2017. "Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe," Energy, Elsevier, vol. 141(C), pages 2013-2044.
    5. Di Foggia, Giacomo & Beccarello, Massimo, 2020. "The impact of a gain-sharing cost-reflective tariff on waste management cost under incentive regulation: The Italian case," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 265.
    6. Lombrano, Alessandro, 2009. "Cost efficiency in the management of solid urban waste," Resources, Conservation & Recycling, Elsevier, vol. 53(11), pages 601-611.
    7. Debnath, Somnath & Bose, S.K., 2014. "Exploring full cost accounting approach to evaluate cost of MSW services in India," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 87-95.
    8. Vanessa Zeller & Edgar Battand Towa Kouokam & Marc Degrez & Wouter Achten, 2019. "Urban waste flows and their potential for a circular economy model at city-region level," ULB Institutional Repository 2013/278528, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Foggia, Giacomo & Beccarello, Massimo, 2021. "Drivers of municipal solid waste management cost based on cost models inherent to sorted and unsorted waste," SocArXiv s6q3m, Center for Open Science.
    2. Di Foggia, Giacomo & Beccarello, Massimo, 2021. "Designing waste management systems to meet circular economy goals: The Italian case," SocArXiv qjcuv, Center for Open Science.
    3. Di Foggia, Giacomo & Beccarello, Massimo, 2023. "Designing circular economy-compliant municipal solid waste management charging schemes," Utilities Policy, Elsevier, vol. 81(C).
    4. Giulia Caruso & Stefano Antonio Gattone, 2019. "Waste Management Analysis in Developing Countries through Unsupervised Classification of Mixed Data," Social Sciences, MDPI, vol. 8(6), pages 1-15, June.
    5. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Magnanelli, Elisa & Tranås, Olaf Lehn & Carlsson, Per & Mosby, Jostein & Becidan, Michael, 2020. "Dynamic modeling of municipal solid waste incineration," Energy, Elsevier, vol. 209(C).
    7. Di Foggia, Giacomo & Beccarello, Massimo, 2020. "The impact of a gain-sharing cost-reflective tariff on waste management cost under incentive regulation: The Italian case," SocArXiv cvb7e_v1, Center for Open Science.
    8. Wienchol, Paulina & Szlęk, Andrzej & Ditaranto, Mario, 2020. "Waste-to-energy technology integrated with carbon capture – Challenges and opportunities," Energy, Elsevier, vol. 198(C).
    9. Elena Cristina Rada & Elena Romenovna Magaril & Marco Schiavon & Anzhelika Karaeva & Maxim Chashchin & Vincenzo Torretta, 2020. "MSW Management in Universities: Sharing Best Practices," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    10. Birgen, Cansu & Magnanelli, Elisa & Carlsson, Per & Becidan, Michaël, 2021. "Operational guidelines for emissions control using cross-correlation analysis of waste-to-energy process data," Energy, Elsevier, vol. 220(C).
    11. Di Foggia, Giacomo & Beccarello, Massimo, 2021. "Designing waste management systems to meet circular economy goals: The Italian case," SocArXiv qjcuv_v1, Center for Open Science.
    12. Eryganov, Ivan & Šomplák, Radovan & Nevrlý, Vlastimír & Osicka, Ondrej & Procházka, Vít, 2022. "Cost-effective municipal unions formation within intermediate regions under prioritized waste energy recovery," Energy, Elsevier, vol. 256(C).
    13. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Corina Pelau & Alexandra Catalina Chinie, 2018. "Econometric Model for Measuring the Impact of the Education Level of the Population on the Recycling Rate in a Circular Economy," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 20(48), pages 340-340.
    15. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    16. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    17. Konrad Siegfried & Susann Günther & Sara Mengato & Fabian Riedel & Daniela Thrän, 2023. "Boosting Biowaste Valorisation—Do We Need an Accelerated Regional Implementation of the European Law for End-of-Waste?," Sustainability, MDPI, vol. 15(17), pages 1-13, September.
    18. Emmanuel D. Adamides & Konstantinos Georgousoglou & Yannis Mouzakitis, 2023. "Designing a Flexible and Adaptive Municipal Waste Management Organisation Using the Viable System Model," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    19. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    20. Romano, Giulia & Molinos-Senante, María & Carosi, Laura & Llanquileo-Melgarejo, Paula & Sala-Garrido, Ramón & Mocholi-Arce, Manuel, 2021. "Assessing the dynamic eco-efficiency of Italian municipalities by accounting for the ownership of the entrusted waste utilities," Utilities Policy, Elsevier, vol. 73(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:s6q3m_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.