IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v209y2020ics0360544220315346.html
   My bibliography  Save this article

Dynamic modeling of municipal solid waste incineration

Author

Listed:
  • Magnanelli, Elisa
  • Tranås, Olaf Lehn
  • Carlsson, Per
  • Mosby, Jostein
  • Becidan, Michael

Abstract

In this work, a comprehensive dynamic model of a moving grate Waste-to-Energy plant is developed using MATLAB Simulink. The objective is to develop a reliable and flexible model which can reproduce the dynamic behavior of combustion chamber and boiler. For this purpose, an extensive number of process data is used both in model development and for validation. Contrary to previous works in literature, fluctuations in both waste properties and operational set points are taken into account. The validated model is then used to study the dynamic response of the plant to changes in important process parameters. As expected, the dynamic response of the plant is faster for changes in primary and secondary air than for changes in grate speed and waste flow. The steam production response is from 1 to 4 min slower than the flue gas oxygen concentration response. Moreover, the response time depends to a large extent on the properties of the waste; as an example, an increase in waste humidity from 25% to 35% results in a 21 min increase in the steam production response time. Such characterization of the dynamic response of the plant is fundamental to develop improved control strategies.

Suggested Citation

  • Magnanelli, Elisa & Tranås, Olaf Lehn & Carlsson, Per & Mosby, Jostein & Becidan, Michael, 2020. "Dynamic modeling of municipal solid waste incineration," Energy, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315346
    DOI: 10.1016/j.energy.2020.118426
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220315346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malinauskaite, J. & Jouhara, H. & Czajczyńska, D. & Stanchev, P. & Katsou, E. & Rostkowski, P. & Thorne, R.J. & Colón, J. & Ponsá, S. & Al-Mansour, F. & Anguilano, L. & Krzyżyńska, R. & López, I.C. & , 2017. "Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe," Energy, Elsevier, vol. 141(C), pages 2013-2044.
    2. Mahlia, T.M.I. & Abdulmuin, M.Z. & Alamsyah, T.M.I. & Mukhlishien, D., 2003. "Dynamic modeling and simulation of a palm wastes boiler," Renewable Energy, Elsevier, vol. 28(8), pages 1235-1256.
    3. Makarichi, Luke & Jutidamrongphan, Warangkana & Techato, Kua-anan, 2018. "The evolution of waste-to-energy incineration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 812-821.
    4. Alobaid, Falah & Al-Maliki, Wisam Abed Kattea & Lanz, Thomas & Haaf, Martin & Brachthäuser, Andreas & Epple, Bernd & Zorbach, Ingo, 2018. "Dynamic simulation of a municipal solid waste incinerator," Energy, Elsevier, vol. 149(C), pages 230-249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lianhong Chen & Chao Wang & Rigang Zhong & Jin Wang & Zheng Zhao, 2022. "Intelligent Modeling of the Incineration Process in Waste Incineration Power Plant Based on Deep Learning," Energies, MDPI, vol. 15(12), pages 1-12, June.
    2. Ding, Haixu & Tang, Jian & Qiao, Junfei, 2023. "Dynamic modeling of multi-input and multi-output controlled object for municipal solid waste incineration process," Applied Energy, Elsevier, vol. 339(C).
    3. Magnanelli, Elisa & Mosby, Jostein & Becidan, Michael, 2021. "Scenarios for carbon capture integration in a waste-to-energy plant," Energy, Elsevier, vol. 227(C).
    4. Natalia Vukovic & Evgenia Makogon, 2022. "Waste-to-Energy Generation: Complex Efficiency Analysis of Modern Technologies," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    5. Vasileiadou, Agapi & Zoras, Stamatis & Iordanidis, Andreas, 2021. "Biofuel potential of compost-like output from municipal solid waste: Multiple analyses of its seasonal variation and blends with lignite," Energy, Elsevier, vol. 236(C).
    6. Hatem Abushammala & Muhammad Adil Masood & Salma Taqi Ghulam & Jia Mao, 2023. "On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    7. Johan De Greef & Quynh N. Hoang & Raf Vandevelde & Wouter Meynendonckx & Zouhir Bouchaar & Giuseppe Granata & Mathias Verbeke & Mariya Ishteva & Tine Seljak & Jo Van Caneghem & Maarten Vanierschot, 2023. "Towards Waste-to-Energy-and-Materials Processes with Advanced Thermochemical Combustion Intelligence in the Circular Economy," Energies, MDPI, vol. 16(4), pages 1-19, February.
    8. Otgonbayar, Tuvshinjargal & Mazzotti, Marco, 2024. "Modeling and assessing the integration of CO2 capture in waste-to-energy plants delivering district heating," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Di Foggia, Giacomo & Beccarello, Massimo, 2021. "Drivers of municipal solid waste management cost based on cost models inherent to sorted and unsorted waste," SocArXiv s6q3m, Center for Open Science.
    3. Di Foggia, Giacomo & Beccarello, Massimo, 2021. "Designing waste management systems to meet circular economy goals: The Italian case," MPRA Paper 105959, University Library of Munich, Germany.
    4. Birgen, Cansu & Magnanelli, Elisa & Carlsson, Per & Becidan, Michaël, 2021. "Operational guidelines for emissions control using cross-correlation analysis of waste-to-energy process data," Energy, Elsevier, vol. 220(C).
    5. Costa, Michela & Curcio, Christian & Piazzullo, Daniele & Rocco, Vittorio & Tuccillo, Raffaele, 2018. "RDF incineration modelling trough thermo-chemical conversion and gaseous combustion coupling," Energy, Elsevier, vol. 161(C), pages 974-987.
    6. Wienchol, Paulina & Szlęk, Andrzej & Ditaranto, Mario, 2020. "Waste-to-energy technology integrated with carbon capture – Challenges and opportunities," Energy, Elsevier, vol. 198(C).
    7. Eryganov, Ivan & Šomplák, Radovan & Nevrlý, Vlastimír & Osicka, Ondrej & Procházka, Vít, 2022. "Cost-effective municipal unions formation within intermediate regions under prioritized waste energy recovery," Energy, Elsevier, vol. 256(C).
    8. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    10. Nketiah, Emmanuel & Song, Huaming & Cai, Xiang & Adjei, Mavis & Adu-Gyamfi, Gibbson & Obuobi, Bright, 2022. "Citizens’ intention to invest in municipal solid waste to energy projects in Ghana: The impact of direct and indirect effects," Energy, Elsevier, vol. 254(PC).
    11. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Corina Pelau & Alexandra Catalina Chinie, 2018. "Econometric Model for Measuring the Impact of the Education Level of the Population on the Recycling Rate in a Circular Economy," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 20(48), pages 340-340.
    13. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    14. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    15. Konrad Siegfried & Susann Günther & Sara Mengato & Fabian Riedel & Daniela Thrän, 2023. "Boosting Biowaste Valorisation—Do We Need an Accelerated Regional Implementation of the European Law for End-of-Waste?," Sustainability, MDPI, vol. 15(17), pages 1-13, September.
    16. Haddadzade Hendo, Armin & Sanaye, Sepehr, 2024. "Simultaneous economic and exergetic optimization of a municipal solid waste incineration plant for sustainable power generation," Energy, Elsevier, vol. 293(C).
    17. Emmanuel D. Adamides & Konstantinos Georgousoglou & Yannis Mouzakitis, 2023. "Designing a Flexible and Adaptive Municipal Waste Management Organisation Using the Viable System Model," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    18. repec:aud:audfin:v:20:y:2018:i:48:p:340 is not listed on IDEAS
    19. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    20. Xing, Zhou & Ping, Zhou & Xiqiang, Zhao & Zhanlong, Song & Wenlong, Wang & Jing, Sun & Yanpeng, Mao, 2021. "Applicability of municipal solid waste incineration (MSWI) system integrated with pre-drying or torrefaction for flue gas waste heat recovery," Energy, Elsevier, vol. 224(C).
    21. Davor Mance & Siniša Vilke & Borna Debelić, 2020. "Sustainable Governance of Coastal Areas and Tourism Impact on Waste Production: Panel Analysis of Croatian Municipalities," Sustainability, MDPI, vol. 12(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.