IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/hpma8_v1.html
   My bibliography  Save this paper

The usefulness of algorithmic models in policy making

Author

Listed:
  • Kolkman, Daan

Abstract

Governments increasingly use algorithmic models to inform their policy making process. Many suggest that employing such quantifications will lead to more efficient, more effective or otherwise better quality policy making. Yet, it remains unclear to what extent these benefits materialize and if so, how they are brought about. This paper draws on the sociology and policy science literature to study how algorithmic models, a particular type of quantification, are used in policy analysis. It presents the outcomes of 38 unstructured interviews with data scientists, policy analysts, and policy makers that work with algorithmic models in government. Based on an in-depth analysis of these interviews, I conclude that the usefulness of algorithmic models in policy analysis is best understood in terms of the commensurability of these quantifications. However, these broad communicative and organizational benefits can only be brought about if algorithmic models are handled with care. Otherwise, they may propagate bias, exclude particular social groups, and will entrench existing worldviews.

Suggested Citation

  • Kolkman, Daan, 2020. "The usefulness of algorithmic models in policy making," SocArXiv hpma8_v1, Center for Open Science.
  • Handle: RePEc:osf:socarx:hpma8_v1
    DOI: 10.31219/osf.io/hpma8_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/5ec2d85cc7d4ab002621c638/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/hpma8_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:hpma8_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.