IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/hkzdr_v1.html
   My bibliography  Save this paper

A New Volatility Model: GQARCH-Ito Model

Author

Listed:
  • Yuan, Huiling
  • Zhou, Yong
  • Xu, Lu
  • Sun, Yulei
  • Cui, Xiangyu

Abstract

Volatility asymmetry is a hot topic in high-frequency financial market. In this paper, we propose a new econometric model, which could describe volatility asymmetry based on high-frequency historical data and low-frequency historical data. After providing the quasi-maximum likelihood estimators for the parameters, we establish their asymptotic properties. We also conduct a series of simulation studies to check the finite sample performance and volatility forecasting performance of the proposed methodologies. And an empirical application is demonstrated that the new model has stronger volatility prediction power than GARCH-It\^{o} model in the literature.

Suggested Citation

  • Yuan, Huiling & Zhou, Yong & Xu, Lu & Sun, Yulei & Cui, Xiangyu, 2020. "A New Volatility Model: GQARCH-Ito Model," SocArXiv hkzdr_v1, Center for Open Science.
  • Handle: RePEc:osf:socarx:hkzdr_v1
    DOI: 10.31219/osf.io/hkzdr_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/5e7dd307c3f8d300e7fa1b50/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/hkzdr_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bibinger, Markus & Neely, Christopher & Winkelmann, Lars, 2019. "Estimation of the discontinuous leverage effect: Evidence from the NASDAQ order book," Journal of Econometrics, Elsevier, vol. 209(2), pages 158-184.
    2. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
    3. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    4. Ilze Kalnina & Dacheng Xiu, 2017. "Nonparametric Estimation of the Leverage Effect: A Trade-Off Between Robustness and Efficiency," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 384-396, January.
    5. Tim Bollerslev & Julia Litvinova & George Tauchen, 2006. "Leverage and Volatility Feedback Effects in High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 4(3), pages 353-384.
    6. Jean-Philippe Bouchaud & Andrew Matacz & Marc Potters, 2001. "The leverage effect in financial markets: retarded volatility and market panic," Science & Finance (CFM) working paper archive 0101120, Science & Finance, Capital Fund Management.
    7. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    8. Christina D. Wang & Per A. Mykland, 2014. "The Estimation of Leverage Effect With High-Frequency Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 197-215, March.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    11. Enrique Sentana, 1995. "Quadratic ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(4), pages 639-661.
    12. Kim, Donggyu & Wang, Yazhen, 2016. "Unified discrete-time and continuous-time models and statistical inferences for merged low-frequency and high-frequency financial data," Journal of Econometrics, Elsevier, vol. 194(2), pages 220-230.
    13. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiling Yuan & Yulei Sun & Lu Xu & Yong Zhou & Xiangyu Cui, 2022. "A new volatility model: GQARCH‐ItÔ model," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 345-370, May.
    2. Yuan, Huiling & Zhou, Yong & Xu, Lu & Sun, Yulei & Cui, Xiangyu, 2020. "A New Volatility Model: GQARCH-Ito Model," SocArXiv hkzdr, Center for Open Science.
    3. Jin Yu Fu & Jin Guan Lin & Guangying Liu & Hong Xia Hao, 2024. "Statistical inference for GQARCH‐Itô‐jumps model based on the realized range volatility," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(4), pages 613-638, July.
    4. Linton, Oliver & Whang, Yoon-Jae & Yen, Yu-Min, 2016. "A nonparametric test of a strong leverage hypothesis," Journal of Econometrics, Elsevier, vol. 194(1), pages 153-186.
    5. Dohyun Chun & Donggyu Kim, 2022. "State Heterogeneity Analysis of Financial Volatility using high‐frequency Financial Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 105-124, January.
    6. Ekaterina Smetanina, 2017. "Real-Time GARCH," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 561-601.
    7. Guido Russi, 2012. "Estimating the Leverage Effect Using High Frequency Data," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 1-24, February.
    8. Donggyu Kim & Minseok Shin, 2023. "Volatility models for stylized facts of high‐frequency financial data," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 262-279, May.
    9. Amira, Khaled & Taamouti, Abderrahim & Tsafack, Georges, 2011. "What drives international equity correlations? Volatility or market direction?," Journal of International Money and Finance, Elsevier, vol. 30(6), pages 1234-1263, October.
    10. Ilze Kalnina & Dacheng Xiu, 2017. "Nonparametric Estimation of the Leverage Effect: A Trade-Off Between Robustness and Efficiency," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 384-396, January.
    11. Bibinger, Markus & Neely, Christopher & Winkelmann, Lars, 2019. "Estimation of the discontinuous leverage effect: Evidence from the NASDAQ order book," Journal of Econometrics, Elsevier, vol. 209(2), pages 158-184.
    12. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    13. Christoffersen, Peter & Feunou, Bruno & Jacobs, Kris & Meddahi, Nour, 2014. "The Economic Value of Realized Volatility: Using High-Frequency Returns for Option Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 663-697, June.
    14. Ricardo Alverola, 2007. "Estimating Volatility Returns Using ARCH Models. An Empirical Case: The Spanish Energy Market," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 66, pages 251-276, Enero-Jun.
    15. Viviana Fernández, 2002. "How Sensitive is Volatility to Exchange Rate Regimes?," Documentos de Trabajo 135, Centro de Economía Aplicada, Universidad de Chile.
    16. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
    17. El Euch Omar & Fukasawa Masaaki & Rosenbaum Mathieu, 2016. "The microstructural foundations of leverage effect and rough volatility," Papers 1609.05177, arXiv.org.
    18. Lundblad, Christian, 2007. "The risk return tradeoff in the long run: 1836-2003," Journal of Financial Economics, Elsevier, vol. 85(1), pages 123-150, July.
    19. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
    20. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:hkzdr_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.