Data-driven Covariate Selection for Confounding Adjustment by Focusing on the Stability of the Effect Estimator
Author
Abstract
Suggested Citation
DOI: 10.31219/osf.io/yve6u_v1
Download full text from publisher
References listed on IDEAS
- Ben B. Hansen, 2004. "Full Matching in an Observational Study of Coaching for the SAT," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 609-618, January.
- Jelena Zurovac & Thomas D. Cook & John Deke & Mariel M. Finucane & Duncan Chaplin & Jared S. Coopersmith & Michael Barna & Lauren Vollmer Forrow, 2021. "Absolute and Relative Bias in Eight Common Observational Study Designs: Evidence from a Meta-analysis," Papers 2111.06941, arXiv.org, revised Nov 2021.
- Luke Keele & Dylan S. Small, 2021. "Comparing Covariate Prioritization via Matching to Machine Learning Methods for Causal Inference Using Five Empirical Applications," The American Statistician, Taylor & Francis Journals, vol. 75(4), pages 355-363, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Loh, Wen Wei & Ren, Dongning, 2021. "Data-driven Covariate Selection for Confounding Adjustment by Focusing on the Stability of the Effect Estimator," OSF Preprints yve6u, Center for Open Science.
- Martín-García, Jaime & Gómez-Limón, José A. & Arriaza, Manuel, 2024. "Conversion to organic farming: Does it change the economic and environmental performance of fruit farms?," Ecological Economics, Elsevier, vol. 220(C).
- Zhenzhen Xu & John D. Kalbfleisch, 2013. "Repeated Randomization and Matching in Multi-Arm Trials," Biometrics, The International Biometric Society, vol. 69(4), pages 949-959, December.
- Raiden B. Hasegawa & Sameer K. Deshpande & Dylan S. Small & Paul R. Rosenbaum, 2020. "Causal Inference With Two Versions of Treatment," Journal of Educational and Behavioral Statistics, , vol. 45(4), pages 426-445, August.
- Stephanie L Mayne & Brian K Lee & Amy H Auchincloss, 2015. "Evaluating Propensity Score Methods in a Quasi-Experimental Study of the Impact of Menu-Labeling," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-12, December.
- Zhenzhen Xu & John D. Kalbfleisch, 2010. "Propensity Score Matching in Randomized Clinical Trials," Biometrics, The International Biometric Society, vol. 66(3), pages 813-823, September.
- Pierluigi Montalbano & Silvia Nenci & Laura Dell'Agostino, 2022.
"A non-parametric assessment of the effects of the Euro on GVC trade,"
International Economics, CEPII research center, issue 172, pages 56-76.
- Montalbano, Pierluigi & Nenci, Silvia & Dell'Agostino, Laura, 2022. "A non-parametric assessment of the effects of the Euro on GVC trade," International Economics, Elsevier, vol. 172(C), pages 56-76.
- Lenis, David & Ackerman, Benjamin & Stuart, Elizabeth A., 2018. "Measuring model misspecification: Application to propensity score methods with complex survey data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 48-57.
- Alberto Abadie & Guido W. Imbens, 2012.
"A Martingale Representation for Matching Estimators,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 833-843, June.
- Alberto Abadie & Guido Imbens, 2009. "A Martingale Representation for Matching Estimators," NBER Working Papers 14756, National Bureau of Economic Research, Inc.
- Abadie, Alberto & Imbens, Guido W., 2009. "A Martingale Representation for Matching Estimators," IZA Discussion Papers 4073, Institute of Labor Economics (IZA).
- Peter R. Mueser & Kenneth R. Troske & Alexey Gorislavsky, 2007.
"Using State Administrative Data to Measure Program Performance,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 761-783, November.
- Peter R. Mueser & Kenneth Troske & Alexey Gorislavsky, 2003. "Using State Administrative Data to Measure Program Performance," Working Papers 0309, Department of Economics, University of Missouri.
- Mueser, Peter R. & Troske, Kenneth & Gorislavsky, Alexey, 2003. "Using State Administrative Data to Measure Program Performance," IZA Discussion Papers 786, Institute of Labor Economics (IZA).
- Peter R. Mueser & Kenneth R. Troske & Alexey Gorislavsky, 2007. "Using State Administrative Data to Measure Program Performance," Working Papers 0702, Department of Economics, University of Missouri.
- Moland, Martin, 2024. "Comparing elite and citizen attitudes towards the differentiated implementation of EU law: Evidence from a large-N survey of citizens, politicians and bureaucrats," SocArXiv d8vbq_v1, Center for Open Science.
- Jason Lyall, 2008. "Does Indiscriminate Violence Incite Insurgent Attacks? Evidence from a Natural Experiment," HiCN Working Papers 44, Households in Conflict Network.
- Casey A. Klofstad & Benjamin G. Bishin, 2014. "Do Social Ties Encourage Immigrant Voters to Participate in Other Campaign Activities?," Social Science Quarterly, Southwestern Social Science Association, vol. 95(2), pages 295-310, June.
- Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
- Tom Fangyun Tan & Serguei Netessine, 2020. "At Your Service on the Table: Impact of Tabletop Technology on Restaurant Performance," Management Science, INFORMS, vol. 66(10), pages 4496-4515, October.
- repec:jss:jstsof:25:i11 is not listed on IDEAS
- Qirui Ju, 2024. "Multidimensional inequality in Chinese economics academia," Journal of Computational Social Science, Springer, vol. 7(3), pages 2643-2676, December.
- Ghosh, Debashis, 2011. "Propensity score modelling in observational studies using dimension reduction methods," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 813-820, July.
- Loyalka, Prashant & Zakharov, Andrey, 2016. "Does shadow education help students prepare for college? Evidence from Russia," International Journal of Educational Development, Elsevier, vol. 49(C), pages 22-30.
- Nattino, Giovanni & Song, Chi & Lu, Bo, 2022. "Polymatching algorithm in observational studies with multiple treatment groups," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
- Daniele Bottigliengo & Giulia Lorenzoni & Honoria Ocagli & Matteo Martinato & Paola Berchialla & Dario Gregori, 2021. "Propensity Score Analysis with Partially Observed Baseline Covariates: A Practical Comparison of Methods for Handling Missing Data," IJERPH, MDPI, vol. 18(13), pages 1-17, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:yve6u_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.