IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/u6vz5.html
   My bibliography  Save this paper

Explanation, prediction, and causality: Three sides of the same coin?

Author

Listed:
  • Watts, Duncan J
  • Beck, Emorie D
  • Bienenstock, Elisa Jayne

    (Arizona State University)

  • Bowers, Jake

    (University of Illinois @ Urbana-Champaign)

  • Frank, Aaron
  • Grubesic, Anthony
  • Hofman, Jake M.
  • Rohrer, Julia Marie

    (University of Leipzig)

  • Salganik, Matthew

Abstract

In this essay we make four interrelated points. First, we reiterate previous arguments (Kleinberg et al 2015) that forecasting problems are more common in social science than is often appreciated. From this observation it follows that social scientists should care about predictive accuracy in addition to unbiased or consistent estimation of causal relationships. Second, we argue that social scientists should be interested in prediction even if they have no interest in forecasting per se. Whether they do so explicitly or not, that is, causal claims necessarily make predictions; thus it is both fair and arguably useful to hold them accountable for the accuracy of the predictions they make. Third, we argue that prediction, used in either of the above two senses, is a useful metric for quantifying progress. Important differences between social science explanations and machine learning algorithms notwithstanding, social scientists can still learn from approaches like the Common Task Framework (CTF) which have successfully driven progress in certain fields of AI over the past 30 years (Donoho, 2015). Finally, we anticipate that as the predictive performance of forecasting models and explanations alike receives more attention, it will become clear that it is subject to some upper limit which lies well below deterministic accuracy for many applications of interest (Martin et al 2016). Characterizing the properties of complex social systems that lead to higher or lower predictive limits therefore poses an interesting challenge for computational social science.

Suggested Citation

  • Watts, Duncan J & Beck, Emorie D & Bienenstock, Elisa Jayne & Bowers, Jake & Frank, Aaron & Grubesic, Anthony & Hofman, Jake M. & Rohrer, Julia Marie & Salganik, Matthew, 2018. "Explanation, prediction, and causality: Three sides of the same coin?," OSF Preprints u6vz5, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:u6vz5
    DOI: 10.31219/osf.io/u6vz5
    as

    Download full text from publisher

    File URL: https://osf.io/download/5bda192e9764d2001c576aa4/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/u6vz5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kindel, Alexander & Bansal, Vineet & Catena, Kristin & Hartshorne, Thomas & Jaeger, Kate & Koffman, Dawn & McLanahan, Sara & Phillips, Maya & Rouhani, Shiva & Vinh, Ryan, 2018. "Improving metadata infrastructure for complex surveys: Insights from the Fragile Families Challenge," SocArXiv u8spj, Center for Open Science.
    2. Andrew Gelman & John Carlin, 2017. "Some Natural Solutions to the -Value Communication Problem—and Why They Won’t Work," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 899-901, July.
    3. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    4. Ian Lundberg & Arvind Narayanan & Karen Levy & Matthew Salganik, 2018. "Privacy, ethics, and data access: A case study of the Fragile Families Challenge," Working Papers wp18-09-ff, Princeton University, School of Public and International Affairs, Center for Research on Child Wellbeing..
    5. Alexander Kindel & Vineet Bansal & Kristin Catena & Thomas Hartshorne & Kate Jaeger, 2018. "Improving metadata infrastructure for complex surveys: 
Insights from the Fragile Families Challenge," Working Papers wp18-10-ff, Princeton University, School of Public and International Affairs, Center for Research on Child Wellbeing..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Svitlana Volkova & Dustin Arendt & Emily Saldanha & Maria Glenski & Ellyn Ayton & Joseph Cottam & Sinan Aksoy & Brett Jefferson & Karthnik Shrivaram, 2023. "Explaining and predicting human behavior and social dynamics in simulated virtual worlds: reproducibility, generalizability, and robustness of causal discovery methods," Computational and Mathematical Organization Theory, Springer, vol. 29(1), pages 220-241, March.
    2. Benjamin W. Domingue & Klint Kanopka & Radhika Kapoor & Steffi Pohl & R. Philip Chalmers & Charles Rahal & Mijke Rhemtulla, 2024. "The InterModel Vigorish as a Lens for Understanding (and Quantifying) the Value of Item Response Models for Dichotomously Coded Items," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 1034-1054, September.
    3. Elizaveta Sivak & Paulina Pankowska & Adriënne Mendrik & Tom Emery & Javier Garcia-Bernardo & Seyit Höcük & Kasia Karpinska & Angelica Maineri & Joris Mulder & Malvina Nissim & Gert Stulp, 2024. "Combining the strengths of Dutch survey and register data in a data challenge to predict fertility (PreFer)," Journal of Computational Social Science, Springer, vol. 7(2), pages 1403-1431, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    2. Naguib, Costanza, 2019. "Estimating the Heterogeneous Impact of the Free Movement of Persons on Relative Wage Mobility," Economics Working Paper Series 1903, University of St. Gallen, School of Economics and Political Science.
    3. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    4. Thiemo Fetzer & Stephan Kyburz, 2024. "Cohesive Institutions and Political Violence," The Review of Economics and Statistics, MIT Press, vol. 106(1), pages 133-150, January.
    5. Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," GLO Discussion Paper Series 1445, Global Labor Organization (GLO).
    6. Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
    7. Sascha O. Becker & Thiemo Fetzer, 2018. "Has Eastern European Migration Impacted UK-born Workers?," CAGE Online Working Paper Series 376, Competitive Advantage in the Global Economy (CAGE).
    8. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    9. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    10. Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
    11. Gharad Bryan & Dean Karlan & Adam Osman, 2024. "Big Loans to Small Businesses: Predicting Winners and Losers in an Entrepreneurial Lending Experiment," American Economic Review, American Economic Association, vol. 114(9), pages 2825-2860, September.
    12. Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
    13. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    14. Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," MPRA Paper 110703, University Library of Munich, Germany.
    15. Suriyan Jomthanachai & Wai Peng Wong & Khai Wah Khaw, 2024. "An Application of Machine Learning to Logistics Performance Prediction: An Economics Attribute-Based of Collective Instance," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 741-792, February.
    16. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    17. Kristoffer B. Birkeland & Allan D. D'Silva & Roland Füss & Are Oust, 2021. "The Predictability of House Prices: "Human Against Machine"," International Real Estate Review, Global Social Science Institute, vol. 24(2), pages 139-183.
    18. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    19. Bryan T. Kelly & Asaf Manela & Alan Moreira, 2019. "Text Selection," NBER Working Papers 26517, National Bureau of Economic Research, Inc.
    20. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:u6vz5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.