IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/r3hmz.html
   My bibliography  Save this paper

Analysis of the cryptocurrency market applying different prototype-based clustering techniques

Author

Listed:
  • Lorenzo, Luis

Abstract

Since the appearance of Bitcoin, cryptocurrencies have experienced enormous growth not only in terms of capitalization but also in number. As a result, the cryptocurrency market can be an attractive arena for investors as it offers many possibilities, but a difficult one to understand as well. In this work, we aim to summarize and segment the whole cryptocurrency market in 2018 with the help of data analysis tools. We will use three different partitional clustering algorithms each of them using a different representation for cryptocurrencies, namely: yearly mean and standard deviation of the returns, distribution of returns, and time series of returns. Since each representation will provide a different and complementary perspective of the market, we will also explore the combination of the three clustering results to obtain a fine-grained analysis of the main trends of the market. Finally, we will analyse the association of the clustering results with other descriptive features of the cryptocurrencies, including the age, technological attributes, and financial ratios derived from them. This will help to enhance the profiling of the clusters with additional insights. As a result, this work offers a description of the market and a methodology that can be reproduced by investors that want to understand the main trends on the market and that look for cryptocurrencies with different financial performance.

Suggested Citation

  • Lorenzo, Luis, 2021. "Analysis of the cryptocurrency market applying different prototype-based clustering techniques," OSF Preprints r3hmz, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:r3hmz
    DOI: 10.31219/osf.io/r3hmz
    as

    Download full text from publisher

    File URL: https://osf.io/download/6046baff59e91000328286a5/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/r3hmz?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Champagne, Claudia, 2014. "The international syndicated loan market network: An “unholy trinity”?," Global Finance Journal, Elsevier, vol. 25(2), pages 148-168.
    2. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    3. Paulus, Michal & Kristoufek, Ladislav, 2015. "Worldwide clustering of the corruption perception," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 351-358.
    4. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    5. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    6. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    7. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    8. Castagna, Alina & Chentouf, Leila & Ernst, Ekkehard, 2017. "Economic vulnerabilities in Italy: A network analysis using similarities in sectoral employment," GLO Discussion Paper Series 50, Global Labor Organization (GLO).
    9. Artur F. Tomeczek & Tomasz M. Napiórkowski, 2024. "PageRank and Regression as a Two-Step Approach to Analysing a Network of Nasdaq Firms During a Recession: Insights from Minimum Spanning Tree Topology," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 3, pages 56-69.
    10. Yanhua Chen & Rosario N Mantegna & Athanasios A Pantelous & Konstantin M Zuev, 2018. "A dynamic analysis of S&P 500, FTSE 100 and EURO STOXX 50 indices under different exchange rates," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-40, March.
    11. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    12. Carlos León & Geun-Young Kim & Constanza Martínez & Daeyup Lee, 2017. "Equity markets’ clustering and the global financial crisis," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1905-1922, December.
    13. Anna Maria D’Arcangelis & Giulia Rotundo, 2016. "Complex Networks in Finance," Lecture Notes in Economics and Mathematical Systems, in: Pasquale Commendatore & Mariano Matilla-García & Luis M. Varela & Jose S. Cánovas (ed.), Complex Networks and Dynamics, pages 209-235, Springer.
    14. Cheng Juan Zhan & William Rea & Alethea Rea, 2016. "Stock Selection as a Problem in Phylogenetics—Evidence from the ASX," IJFS, MDPI, vol. 4(4), pages 1-19, September.
    15. Shekhtman, Louis M. & Danziger, Michael M. & Havlin, Shlomo, 2016. "Recent advances on failure and recovery in networks of networks," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 28-36.
    16. Irena Vodenska & Alexander P. Becker & Di Zhou & Dror Y. Kenett & H. Eugene Stanley & Shlomo Havlin, 2016. "Community Analysis of Global Financial Markets," Risks, MDPI, vol. 4(2), pages 1-15, May.
    17. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.
    18. N. C. Suganya & G. A. Vijayalakshmi Pai, 2010. "Pareto‐archived evolutionary wavelet network for financial constrained portfolio optimization," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 17(2), pages 59-90, April.
    19. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    20. Brida, Juan Gabriel & Risso, Wiston Adrián, 2008. "Multidimensional minimal spanning tree: The Dow Jones case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5205-5210.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:r3hmz. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.