Author
Listed:
- Donegan, Connor
- Chun, Yongwan
- Hughes, Amy E.
Abstract
This paper proposes a Bayesian method for spatial regression using eigenvector spatial filtering (ESF) and Piironen and Vehtari's (2017) regularized horseshoe (RHS) prior. ESF models are most often estimated using variable selection procedures such as stepwise selection, but in the absence of a Bayesian model averaging procedure variable selection methods cannot properly account for parameter uncertainty. Hierarchical shrinkage priors such as the RHS address the foregoing concern in a computationally efficient manner by encoding prior information about spatial filters into an adaptive prior distribution which shrinks posterior estimates towards zero in the absence of a strong signal while only minimally regularizing coefficients of important eigenvectors. This paper presents results from a large simulation study which compares the performance of the proposed Bayesian model (RHS-ESF) to alternative spatial models under a variety of spatial autocorrelation scenarios. The RHS-ESF model performance matched that of the SAR model from which the data was generated. The study highlights that reliable uncertainty estimates require greater attention to spatial autocorrelation in covariates than is typically given. A demonstration analysis of 2016 U.S. Presidential election results further evidences robustness of results to hyper-prior specifications as well as the advantages of estimating spatial models using the Stan probabilistic programming language.
Suggested Citation
Donegan, Connor & Chun, Yongwan & Hughes, Amy E., 2020.
"Bayesian estimation of spatial filters with Moran's eigenvectors and hierarchical shrinkage priors,"
OSF Preprints
fah3z_v1, Center for Open Science.
Handle:
RePEc:osf:osfxxx:fah3z_v1
DOI: 10.31219/osf.io/fah3z_v1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:fah3z_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.