A Two-Species Occupancy Model with a Continuous-Time Detection Process Reveals Spatial and Temporal Interactions
Author
Abstract
Suggested Citation
DOI: 10.1007/s13253-021-00482-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
- Roland Langrock & David L. Borchers & Hans J. Skaug, 2013. "Markov-Modulated Nonhomogeneous Poisson Processes for Modeling Detections in Surveys of Marine Mammal Abundance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 840-851, September.
- Michael J. Cherry & L. Mike Conner & Robert J. Warren, 2015. "Effects of predation risk and group dynamics on white-tailed deer foraging behavior in a longleaf pine savanna," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(4), pages 1091-1099.
- Robert M Dorazio & K Ullas Karanth, 2017. "A hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recorders," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-18, May.
- Matthew R. Schofield & Richard J. Barker & Nicholas Gelling, 2018. "Continuous†time capture–recapture in closed populations," Biometrics, The International Biometric Society, vol. 74(2), pages 626-635, June.
- Erin M. Schliep & Alan E. Gelfand & James S. Clark & Roland Kays, 2018. "Joint Temporal Point Pattern Models for Proximate Species Occurrence in a Fixed Area Using Camera Trap Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 334-357, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Eivind Flittie Kleiven & Frédéric Barraquand & Olivier Gimenez & John-André Henden & Rolf Anker Ims & Eeva Marjatta Soininen & Nigel Gilles Yoccoz, 2023. "A Dynamic Occupancy Model for Interacting Species with Two Spatial Scales," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 466-482, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
- Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
- Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
- Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020.
"Growth, development, and structural change at the firm-level: The example of the PR China,"
Papers
2012.14503, arXiv.org.
- Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020. "Growth, development, and structural change at the firmlevel: The example of the PR China," Chemnitz Economic Papers 040, Department of Economics, Chemnitz University of Technology.
- Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," MPRA Paper 105011, University Library of Munich, Germany.
- Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2021. "Growth, development, and structural change at the firm level: The example of the PR China," Working Papers on East Asian Studies 128/2021, University of Duisburg-Essen, Institute of East Asian Studies IN-EAST.
- van Kesteren Erik-Jan & Bergkamp Tom, 2023. "Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 19(4), pages 273-293, December.
- Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
- Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
- Kuschnig, Nikolas, 2021.
"Bayesian Spatial Econometrics and the Need for Software,"
Department of Economics Working Paper Series
318, WU Vienna University of Economics and Business.
- Nikolas Kuschnig, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Papers wuwp318, Vienna University of Economics and Business, Department of Economics.
- Deniz Aksoy & David Carlson, 2022. "Electoral support and militants’ targeting strategies," Journal of Peace Research, Peace Research Institute Oslo, vol. 59(2), pages 229-241, March.
- Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
- Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
- D. Fouskakis & G. Petrakos & I. Rotous, 2020. "A Bayesian longitudinal model for quantifying students’ preferences regarding teaching quality indicators," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 255-270, August.
- Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
- Jonas Moss & Riccardo De Bin, 2023. "Modelling publication bias and p‐hacking," Biometrics, The International Biometric Society, vol. 79(1), pages 319-331, March.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
- Matthias Breuer & Harm H. Schütt, 2023. "Accounting for uncertainty: an application of Bayesian methods to accruals models," Review of Accounting Studies, Springer, vol. 28(2), pages 726-768, June.
- Alina Ferecatu & Arnaud Bruyn & Prithwiraj Mukherjee, 2024. "Silently killing your panelists one email at a time: The true cost of email solicitations," Journal of the Academy of Marketing Science, Springer, vol. 52(4), pages 1216-1239, July.
- Loke Schmalensee & Pauline Caillault & Katrín Hulda Gunnarsdóttir & Karl Gotthard & Philipp Lehmann, 2023. "Seasonal specialization drives divergent population dynamics in two closely related butterflies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Edgar Santos‐Fernandez & Erin E. Peterson & Julie Vercelloni & Em Rushworth & Kerrie Mengersen, 2021. "Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 147-173, January.
More about this item
Keywords
Activity patterns; Camera traps; Occupancy; Point process; Temporal interactions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:27:y:2022:i:2:d:10.1007_s13253-021-00482-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.