Evidence accumulation clustering using combinations of features
Author
Abstract
Suggested Citation
DOI: 10.31219/osf.io/epb6t
Download full text from publisher
References listed on IDEAS
- Agnan Kessy & Alex Lewin & Korbinian Strimmer, 2018. "Optimal Whitening and Decorrelation," The American Statistician, Taylor & Francis Journals, vol. 72(4), pages 309-314, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stan Lipovetsky, 2022. "Canonical Concordance Correlation Analysis," Mathematics, MDPI, vol. 11(1), pages 1-12, December.
- Schosser, Josef, 2019. "Consistency between principal and agent with differing time horizons: Computing incentives under risk," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1113-1123.
- Damiano Brigo & Xiaoshan Huang & Andrea Pallavicini & Haitz Saez de Ocariz Borde, 2021. "Interpretability in deep learning for finance: a case study for the Heston model," Papers 2104.09476, arXiv.org.
- Harold Doran, 2023. "A Collection of Numerical Recipes Useful for Building Scalable Psychometric Applications," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 37-69, February.
- Loperfido, Nicola, 2024. "The skewness of mean–variance normal mixtures," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
- Steen MAGNUSSEN, 2018. "An estimation strategy to protect against over-estimating precision in a LiDAR-based prediction of a stand mean," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 64(12), pages 497-505.
- Minati, Ludovico & Li, Chao & Bartels, Jim & Chakraborty, Parthojit & Li, Zixuan & Yoshimura, Natsue & Frasca, Mattia & Ito, Hiroyuki, 2023. "Accelerometer time series augmentation through externally driving a non-linear dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Dirk Roeder & Georgi Dimitroff, 2020. "Volatility model calibration with neural networks a comparison between direct and indirect methods," Papers 2007.03494, arXiv.org.
- Nikita Moshkov & Michael Bornholdt & Santiago Benoit & Matthew Smith & Claire McQuin & Allen Goodman & Rebecca A. Senft & Yu Han & Mehrtash Babadi & Peter Horvath & Beth A. Cimini & Anne E. Carpenter , 2024. "Learning representations for image-based profiling of perturbations," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Jonathan Gillard & Emily O’Riordan & Anatoly Zhigljavsky, 2023. "Polynomial whitening for high-dimensional data," Computational Statistics, Springer, vol. 38(3), pages 1427-1461, September.
- Priddle, Jacob W. & Drovandi, Christopher, 2023. "Transformations in semi-parametric Bayesian synthetic likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2020-01-06 (Computational Economics)
- NEP-URE-2020-01-06 (Urban and Real Estate Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:epb6t. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.