IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/bmtdq_v1.html
   My bibliography  Save this paper

Meta-Regression Methods to Characterize Evidence Strength Using Meaningful-Effect Percentages Conditional on Study Characteristics

Author

Listed:
  • Mathur, Maya B
  • VanderWeele, Tyler J.

Abstract

Meta-regression analyses usually focus on estimating and testing differences in average effect sizes between individual levels of each meta-regression covariate in turn. These metrics are useful but have limitations: they consider each covariate individually, rather than in combination, and they characterize only the mean of a potentially heterogeneous distribution of effects. We propose additional metrics that address both limitations. Given a chosen threshold representing a meaningfully strong effect size, these metrics address the questions: (1) “For a given joint level of the covariates, what percentage of the population effects are meaningfully strong?” and (2) “For any two joint levels of the covariates, what is the difference between these percentages of meaningfully strong effects?” We provide semiparametric methods for estimation and inference and assess their performance in a simulation study. We apply the proposed methods to meta-regression analyses on memory consolidation and on dietary behavior interventions, illustrating how the methods can provide more information than standard reporting alone. To facilitate implementing the methods in practice, we provide reporting guidelines and simple R code.

Suggested Citation

  • Mathur, Maya B & VanderWeele, Tyler J., 2020. "Meta-Regression Methods to Characterize Evidence Strength Using Meaningful-Effect Percentages Conditional on Study Characteristics," OSF Preprints bmtdq_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:bmtdq_v1
    DOI: 10.31219/osf.io/bmtdq_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/5f0610791484ac010766ca5b/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/bmtdq_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Spiegelman, D. & VanderWeele, T.J., 2017. "Evaluating public health interventions: 6. Modeling ratios or differences? let the data tell us," American Journal of Public Health, American Public Health Association, vol. 107(7), pages 1087-1091.
    2. Mathur, Maya B & VanderWeele, Tyler, 2020. "Robust metrics and sensitivity analyses for meta-analyses of heterogeneous effects," OSF Preprints r2s78, Center for Open Science.
    3. Pustejovsky, James E & Tipton, Elizabeth, 2020. "Meta-Analysis with Robust Variance Estimation: Expanding the Range of Working Models," MetaArXiv vyfcj, Center for Open Science.
    4. Pustejovsky, James E & Tipton, Elizabeth, 2020. "Meta-Analysis with Robust Variance Estimation: Expanding the Range of Working Models," MetaArXiv vyfcj_v1, Center for Open Science.
    5. Viechtbauer, Wolfgang, 2010. "Conducting Meta-Analyses in R with the metafor Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i03).
    6. Maya B. Mathur & Tyler J. VanderWeele, 2020. "Sensitivity Analysis for Unmeasured Confounding in Meta-Analyses," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 163-172, January.
    7. Mathur, Maya B & VanderWeele, Tyler J., 2020. "Robust metrics and sensitivity analyses for meta-analyses of heterogeneous effects," OSF Preprints r2s78_v1, Center for Open Science.
    8. repec:aph:ajpbhl:10.2105/ajph.2017.303810_7 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathur, Maya B & VanderWeele, Tyler J., 2021. "Methods to address confounding and other biases in meta-analyses: Review and recommendations," OSF Preprints v7dtq_v1, Center for Open Science.
    2. Mathur, Maya B & VanderWeele, Tyler, 2021. "Methods to address confounding and other biases in meta-analyses: Review and recommendations," OSF Preprints v7dtq, Center for Open Science.
    3. Bart Verkuil & Serpil Atasayi & Marc L Molendijk, 2015. "Workplace Bullying and Mental Health: A Meta-Analysis on Cross-Sectional and Longitudinal Data," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
    4. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    5. repec:cup:judgdm:v:15:y:2020:i:6:p:972-988 is not listed on IDEAS
    6. Jonas Schmidt & Tammo H. A. Bijmolt, 2020. "Accurately measuring willingness to pay for consumer goods: a meta-analysis of the hypothetical bias," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 499-518, May.
    7. Mario Herberz & Tobias Brosch & Ulf J. J. Hahnel, 2020. "Kilo what? Default units increase value sensitivity in joint evaluations of energy efficiency," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(6), pages 972-988, November.
    8. Maier, Maximilian & VanderWeele, Tyler J. & Mathur, Maya B, 2021. "Using Selection Models to Assess Sensitivity to Publication Bias: A Tutorial and Call for More Routine Use," MetaArXiv tp45u_v1, Center for Open Science.
    9. Piers Steel & Sjoerd Beugelsdijk & Herman Aguinis, 2021. "The anatomy of an award-winning meta-analysis: Recommendations for authors, reviewers, and readers of meta-analytic reviews," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(1), pages 23-44, February.
    10. Augusteijn, Hilde Elisabeth Maria & van Aert, Robbie Cornelis Maria & van Assen, Marcel A. L. M., 2021. "Posterior Probabilities of Effect Sizes and Heterogeneity in Meta-Analysis: An Intuitive Approach of Dealing with Publication Bias," OSF Preprints avkgj, Center for Open Science.
    11. Georgiou, George K. & Guo, Kan & Naveenkumar, Nithya & Vieira, Ana Paula Alves & Das, J.P., 2020. "PASS theory of intelligence and academic achievement: A meta-analytic review," Intelligence, Elsevier, vol. 79(C).
    12. Stephan Kambach & Ingolf Kühn & Bastien Castagneyrol & Helge Bruelheide, 2016. "The Impact of Tree Diversity on Different Aspects of Insect Herbivory along a Global Temperature Gradient - A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.
    13. Nan Wang & Yuxiang Luan & Rui Ma, 2024. "Detecting causal relationships between work motivation and job performance: a meta-analytic review of cross-lagged studies," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    14. repec:cup:judgdm:v:14:y:2019:i:3:p:234-279 is not listed on IDEAS
    15. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    16. Kelly R Moran & Sara Y Del Valle, 2016. "A Meta-Analysis of the Association between Gender and Protective Behaviors in Response to Respiratory Epidemics and Pandemics," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-25, October.
    17. Cyrielle Maroteau & Antonio Espuela-Ortiz & Esther Herrera-Luis & Sundararajan Srinivasan & Fiona Carr & Roger Tavendale & Karen Wilson & Natalia Hernandez-Pacheco & James D Chalmers & Steve Turner & , 2021. "LTA4H rs2660845 association with montelukast response in early and late-onset asthma," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-17, September.
    18. Barne Willie & Emma L. Sweeney & Steven G. Badman & Mark Chatfield & Andrew J. Vallely & Angela Kelly-Hanku & David M. Whiley, 2022. "The Prevalence of Antimicrobial Resistant Neisseria gonorrhoeae in Papua New Guinea: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 19(3), pages 1-11, January.
    19. Larney, Andrea & Rotella, Amanda & Barclay, Pat, 2019. "Stake size effects in ultimatum game and dictator game offers: A meta-analysis," Organizational Behavior and Human Decision Processes, Elsevier, vol. 151(C), pages 61-72.
    20. Blum, Diego & Holling, Heinz, 2017. "Spearman's law of diminishing returns. A meta-analysis," Intelligence, Elsevier, vol. 65(C), pages 60-66.
    21. Stephanie Medlock & Juliette L Parlevliet & Danielle Sent & Saeid Eslami & Marjan Askari & Derk L Arts & Joost B Hoekstra & Sophia E de Rooij & Ameen Abu-Hanna, 2017. "An email-based intervention to improve the number and timeliness of letters sent from the hospital outpatient clinic to the general practitioner: A pair-randomized controlled trial," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-13, October.
    22. Chin Lin & Hsiang-Cheng Chen & Wen-Hui Fang & Chih-Chien Wang & Yi-Jen Peng & Herng-Sheng Lee & Hung Chang & Chi-Ming Chu & Guo-Shu Huang & Wei-Teing Chen & Yu-Jui Tsai & Hong-Ling Lin & Fu-Huang Lin , 2016. "Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism and Susceptibility to Osteoarthritis of the Knee: A Case-Control Study and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-18, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:bmtdq_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.