IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/7jvrw.html
   My bibliography  Save this paper

Meta-analysis with Jeffreys priors: Empirical frequentist properties

Author

Listed:
  • Mathur, Maya B

Abstract

In small meta-analyses (e.g., up to 20 studies), the best-performing frequentist approaches for estimation and inference can yield very wide confidence intervals for the meta-analytic mean, as well as biased and imprecise estimates of the heterogeneity. We investigate the frequentist performance of alternative Bayesian methods that use the invariant Jeffreys prior. This prior can be motivated from the usual Bayesian perspective, but can alternatively be motivated from a purely frequentist perspective: the resulting posterior modes correspond to the established Firth bias correction of the maximum likelihood estimator. We consider two forms of the Jeffreys prior for random-effects meta-analysis: the previously established “Jeffreys1” prior treats the heterogeneity as a nuisance parameter, whereas the “Jeffreys2” prior treats both the mean and the heterogeneity as estimands of interest. In a large simulation study, we assess the performance of both Jeffreys priors, considering different types of Bayesian point estimates and intervals. We assess the performance of estimation and inference for both the mean and the heterogeneity parameters, comparing to the best-performing frequentist methods. We conclude that for small meta-analyses of binary outcomes, the Jeffreys2 prior may offer advantages over standard frequentist methods for estimation and inference of the mean parameter. In these cases, Jeffreys2 can substantially improve efficiency while more often showing nominal frequentist coverage. However, for small meta-analyses of continuous outcomes, standard frequentist methods seem to remain the best choices. The best-performing method for estimating the heterogeneity varied according to the heterogeneity itself.

Suggested Citation

  • Mathur, Maya B, 2024. "Meta-analysis with Jeffreys priors: Empirical frequentist properties," OSF Preprints 7jvrw, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:7jvrw
    DOI: 10.31219/osf.io/7jvrw
    as

    Download full text from publisher

    File URL: https://osf.io/download/65eb3895719c060952d49a46/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/7jvrw?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sander Greenland, 2003. "Generalized Conjugate Priors for Bayesian Analysis of Risk and Survival Regressions," Biometrics, The International Biometric Society, vol. 59(1), pages 92-99, March.
    2. David Magis, 2015. "A Note on Weighted Likelihood and Jeffreys Modal Estimation of Proficiency Levels in Polytomous Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 200-204, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandip Sinharay, 2015. "The Asymptotic Distribution of Ability Estimates," Journal of Educational and Behavioral Statistics, , vol. 40(5), pages 511-528, October.
    2. Sandip Sinharay, 2016. "Asymptotically Correct Standardization of Person-Fit Statistics Beyond Dichotomous Items," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 992-1013, December.
    3. Sander Greenland & Leeka Kheifets, 2006. "Leukemia Attributable to Residential Magnetic Fields: Results from Analyses Allowing for Study Biases," Risk Analysis, John Wiley & Sons, vol. 26(2), pages 471-482, April.
    4. David Magis & Norman Verhelst, 2017. "On the Finiteness of the Weighted Likelihood Estimator of Ability," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 637-647, September.
    5. Sander Greenland, 2005. "Multiple‐bias modelling for analysis of observational data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 267-306, March.
    6. Rigon, Tommaso & Aliverti, Emanuele, 2023. "Conjugate priors and bias reduction for logistic regression models," Statistics & Probability Letters, Elsevier, vol. 202(C).
    7. Yang Liu & Jan Hannig & Abhishek Pal Majumder, 2019. "Second-Order Probability Matching Priors for the Person Parameter in Unidimensional IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 701-718, September.
    8. Paul Gustafson & Sander Greenland, 2006. "The Performance of Random Coefficient Regression in Accounting for Residual Confounding," Biometrics, The International Biometric Society, vol. 62(3), pages 760-768, September.
    9. Frederico M. Almeida & Vinícius D. Mayrink & Enrico A. Colosimo, 2023. "Bayesian solution to the monotone likelihood in the standard mixture cure model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(3), pages 365-390, August.
    10. Rahmouni, Mohieddine, 2023. "Corruption and corporate innovation in Tunisia during an economic downturn," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 314-326.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:7jvrw. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.