IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/5kc6f.html
   My bibliography  Save this paper

geocausal: An R Package for Spatio-Temporal Causal Inference

Author

Listed:
  • Mukaigawara, Mitsuru

    (Harvard University)

  • Zhou, Lingxiao
  • Papadogeorgou, Georgia
  • Lyall, Jason

    (Dartmouth College)

  • Imai, Kosuke

Abstract

Scholars from diverse fields now use highly disaggregated ("microlevel") data with fine-grained spatial (e.g., locations of villages and individuals) and temporal (days, hours, or even seconds) dimensions to test their theories. Despite the proliferation of these data, however, statistical methods for causal inference with spatio-temporal data remain underdeveloped. We introduce an R package, geocausal, that enables researchers to implement causal inference methods for highly disaggregated spatio-temporal data. The geocausal package implements two necessary steps for spatio-temporal causal inference: (1) preparing the data and (2) estimating causal effects. The geocausal package allows users to effectively use fine-grained spatio-temporal data, test counterfactual scenarios that have spatial and temporal dimensions, and visualize each step efficiently. We illustrate the capabilities of the geocausal package by analyzing the US airstrikes and insurgent attacks in Iraq over various spatial and temporal windows.

Suggested Citation

  • Mukaigawara, Mitsuru & Zhou, Lingxiao & Papadogeorgou, Georgia & Lyall, Jason & Imai, Kosuke, 2024. "geocausal: An R Package for Spatio-Temporal Causal Inference," OSF Preprints 5kc6f, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:5kc6f
    DOI: 10.31219/osf.io/5kc6f
    as

    Download full text from publisher

    File URL: https://osf.io/download/66c7ebdeba4a7e4f29c5cb9c/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/5kc6f?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher Yeh & Anthony Perez & Anne Driscoll & George Azzari & Zhongyi Tang & David Lobell & Stefano Ermon & Marshall Burke, 2020. "Using publicly available satellite imagery and deep learning to understand economic well-being in Africa," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyer, Maximilian & Hulke, Carolin & Kamwi, Jonathan & Kolem, Hannah & Börner, Jan, 2022. "Spatially heterogeneous effects of collective action on environmental dependence in Namibia’s Zambezi region," World Development, Elsevier, vol. 159(C).
    2. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    3. Adham Alsharkawi & Mohammad Al-Fetyani & Maha Dawas & Heba Saadeh & Musa Alyaman, 2021. "Poverty Classification Using Machine Learning: The Case of Jordan," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    4. GIBSON, John & ZHANG, Xiaoxuan & PARK, Albert & YI, Jiang & XI, Li, 2024. "Remotely measuring rural economic activity and poverty : Do we just need better sensors?," CEI Working Paper Series 2023-08, Center for Economic Institutions, Institute of Economic Research, Hitotsubashi University.
    5. Abbate Nicolás & Gasparini Leonardo & Gluzmann Pablo Alfredo & Montes Rojas Gabriel & Sznaider Iván & Yatche Tobías, 2023. "Ingreso Estructural Por Área Geográfica: una aplicación para Argentina," Asociación Argentina de Economía Política: Working Papers 4622, Asociación Argentina de Economía Política.
    6. Lee, Kamwoo & Braithwaite, Jeanine, 2022. "High-resolution poverty maps in Sub-Saharan Africa," World Development, Elsevier, vol. 159(C).
    7. Guanghua Chi & Han Fang & Sourav Chatterjee & Joshua E. Blumenstock, 2022. "Microestimates of wealth for all low- and middle-income countries," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 119(3), pages 2113658119-, January.
    8. Piotr Wójcik & Krystian Andruszek, 2022. "Predicting intra‐urban well‐being from space with nonlinear machine learning," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(4), pages 891-913, August.
    9. John D. Huber & Laura Mayoral, 2024. "Economic Development in Pixels: The Limitations of Nightlights and New Spatially Disaggregated Measures of Consumption and Poverty," Working Papers 1433, Barcelona School of Economics.
    10. Ola Hall & Francis Dompae & Ibrahim Wahab & Fred Mawunyo Dzanku, 2023. "A review of machine learning and satellite imagery for poverty prediction: Implications for development research and applications," Journal of International Development, John Wiley & Sons, Ltd., vol. 35(7), pages 1753-1768, October.
    11. Linsenmeier, Manuel, 2021. "Temperature variability and long-run economic development," LSE Research Online Documents on Economics 110499, London School of Economics and Political Science, LSE Library.
    12. Martina Jakob & Sebastian Heinrich, 2023. "Measuring Human Capital with Social Media Data and Machine Learning," University of Bern Social Sciences Working Papers 46, University of Bern, Department of Social Sciences.
    13. Al Kez, Dlzar & Foley, Aoife & Abdul, Zrar Khald & Del Rio, Dylan Furszyfer, 2024. "Energy poverty prediction in the United Kingdom: A machine learning approach," Energy Policy, Elsevier, vol. 184(C).
    14. Michler, Jeffrey D. & Josephson, Anna & Kilic, Talip & Murray, Siobhan, 2022. "Privacy protection, measurement error, and the integration of remote sensing and socioeconomic survey data," Journal of Development Economics, Elsevier, vol. 158(C).
    15. Imryoung Jeong & Hyunjoo Yang, 2021. "Using maps to predict economic activity," Papers 2112.13850, arXiv.org, revised Apr 2022.
    16. Wang, Qingyi & Wang, Shenhao & Zheng, Yunhan & Lin, Hongzhou & Zhang, Xiaohu & Zhao, Jinhua & Walker, Joan, 2024. "Deep hybrid model with satellite imagery: How to combine demand modeling and computer vision for travel behavior analysis?," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    17. Nadine Bachmann & Shailesh Tripathi & Manuel Brunner & Herbert Jodlbauer, 2022. "The Contribution of Data-Driven Technologies in Achieving the Sustainable Development Goals," Sustainability, MDPI, vol. 14(5), pages 1-33, February.
    18. Klaus Ackermann & Alexey Chernikov & Nandini Anantharama & Miethy Zaman & Paul A Raschky, 2020. "Object Recognition for Economic Development from Daytime Satellite Imagery," SoDa Laboratories Working Paper Series 2020-02, Monash University, SoDa Laboratories.
    19. Robin Jarry & Marc Chaumont & Laure Berti-Équille & Gérard Subsol, 2023. "Comparing spatial and spatio-temporal paradigms to estimate the evolution of socio-economical indicators from satellite images," Post-Print hal-04268542, HAL.
    20. Hu, Ting & Wang, Ting & Yan, Qingyun & Chen, Tiexi & Jin, Shuanggen & Hu, Jun, 2022. "Modeling the spatiotemporal dynamics of global electric power consumption (1992–2019) by utilizing consistent nighttime light data from DMSP-OLS and NPP-VIIRS," Applied Energy, Elsevier, vol. 322(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:5kc6f. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.