IDEAS home Printed from https://ideas.repec.org/p/osf/inarxi/5v27k.html
   My bibliography  Save this paper

Optimalisasi Risiko Saham Menggunakan Optimalisasi Portofolio Markowitz (Studi Kasus Saham Di Indonesia)

Author

Listed:
  • Ahmar, Ansari Saleh

    (Universitas Negeri Makassar)

  • Arifin, Andi Nurani Mangkawani

Abstract

Perdagangan saham di Indonesia dan di dunia yang kadang naik dan kadang turun membuat seorang investor harus berpikir keras agar dapat memperoleh keuntungan yang maksimal dan risiko yang minimal. Investor dapat mengurangi risiko dengan melakukan diversifikasi investasi. Salah satu investasi diversifikasi adalah portofolio. Teori portofolio dibentuk dengan asumsi bahwa investor dengan tepat dapat memilih aset portofolio dengan tujuan memaksimalkan keuntungan yang diharapkan dari tingkat risiko tertentu. Dalam tulisan ini, penulis mencoba untuk menyajikan bagaimana menentukan portofolio optimal menggunakan Markowitz Portofolio Model. Markowitz teori portofolio ditekankan pada memaksimalkan return ekspektasi (mean) dan meminimalkan risiko (varians) dalam rangka memilih dan memperoleh portofolio yang optimal.

Suggested Citation

  • Ahmar, Ansari Saleh & Arifin, Andi Nurani Mangkawani, 2017. "Optimalisasi Risiko Saham Menggunakan Optimalisasi Portofolio Markowitz (Studi Kasus Saham Di Indonesia)," INA-Rxiv 5v27k, Center for Open Science.
  • Handle: RePEc:osf:inarxi:5v27k
    DOI: 10.31219/osf.io/5v27k
    as

    Download full text from publisher

    File URL: https://osf.io/download/59f8fb459ad5a1026d127a3c/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/5v27k?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    2. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
    3. Igor V. Evstigneev & Thorsten Hens & Klaus Reiner Schenk-Hoppé, 2015. "Mathematical Financial Economics," Springer Texts in Business and Economics, Springer, edition 127, number 978-3-319-16571-4, April.
    4. Leung, Pui-Lam & Ng, Hon-Yip & Wong, Wing-Keung, 2012. "An improved estimation to make Markowitz’s portfolio optimization theory users friendly and estimation accurate with application on the US stock market investment," European Journal of Operational Research, Elsevier, vol. 222(1), pages 85-95.
    5. Igor V. Evstigneev & Thorsten Hens & Klaus Reiner Schenk-Hoppé, 2015. "Solution to the Markowitz Optimization Problem," Springer Texts in Business and Economics, in: Mathematical Financial Economics, edition 127, chapter 3, pages 19-25, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelbari El Khamlichi & Thi Hong Van Hoang & Wing‐keung Wong, 2016. "Is Gold Different for Islamic and Conventional Portfolios? A Sectorial Analysis," Post-Print hal-02965765, HAL.
    2. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2016. "Efficient skewness/semivariance portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 17(5), pages 331-346, September.
    3. Kassimatis, Konstantinos, 2021. "Mean-variance versus utility maximization revisited: The case of constant relative risk aversion," International Review of Financial Analysis, Elsevier, vol. 78(C).
    4. Chang, C-L. & McAleer, M.J. & Wong, W.-K., 2015. "Informatics, Data Mining, Econometrics and Financial Economics: A Connection," Econometric Institute Research Papers EI2015-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Ashrafi, Hedieh & Thiele, Aurélie C., 2021. "A study of robust portfolio optimization with European options using polyhedral uncertainty sets," Operations Research Perspectives, Elsevier, vol. 8(C).
    6. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    7. John Griffin, 2015. "Risk Premia and Knightian Uncertainty in an Experimental Market Featuring a Long-Lived Asset," Fordham Economics Discussion Paper Series dp2015-01, Fordham University, Department of Economics.
    8. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    9. Alessandra Carleo & Francesco Cesarone & Andrea Gheno & Jacopo Maria Ricci, 2017. "Approximating exact expected utility via portfolio efficient frontiers," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 115-143, November.
    10. Alina Kvietkauskienė, 2014. "Real Time Investments with Adequate Portfolio Theory," Entrepreneurial Business and Economics Review, Centre for Strategic and International Entrepreneurship at the Cracow University of Economics., vol. 2(4), pages 85-100.
    11. Li, Hua & Bai, Zhidong & Wong, Wing-Keung & McAleer, Michael, 2022. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Econometrics and Statistics, Elsevier, vol. 24(C), pages 133-150.
    12. Tang, Qihe & Tong, Zhiwei & Xun, Li, 2022. "Insurance risk analysis of financial networks vulnerable to a shock," European Journal of Operational Research, Elsevier, vol. 301(2), pages 756-771.
    13. Hemant Jalota & Manoj Thakur, 2018. "Genetic algorithm designed for solving portfolio optimization problems subjected to cardinality constraint," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 294-305, February.
    14. Ma, Guiyuan & Siu, Chi Chung & Zhu, Song-Ping, 2019. "Dynamic portfolio choice with return predictability and transaction costs," European Journal of Operational Research, Elsevier, vol. 278(3), pages 976-988.
    15. Trindade, Marco A.S. & Floquet, Sergio & Filho, Lourival M. Silva, 2020. "Portfolio theory, information theory and Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    16. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    17. Begoña Font, 2016. "Bootstrap estimation of the efficient frontier," Computational Management Science, Springer, vol. 13(4), pages 541-570, October.
    18. Levy, Moshe & Kaplanski, Guy, 2015. "Portfolio selection in a two-regime world," European Journal of Operational Research, Elsevier, vol. 242(2), pages 514-524.
    19. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    20. Rooderkerk, Robert P. & van Heerde, Harald J., 2016. "Robust optimization of the 0–1 knapsack problem: Balancing risk and return in assortment optimization," European Journal of Operational Research, Elsevier, vol. 250(3), pages 842-854.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:inarxi:5v27k. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://ios.io/preprints/inarxiv/discover .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.