IDEAS home Printed from https://ideas.repec.org/p/oec/ecoaaa/1231-en.html
   My bibliography  Save this paper

Incorporating Anchored Inflation Expectations in the Phillips Curve and in the Derivation of OECD Measures of Equilibrium Unemployment

Author

Listed:
  • Elena Rusticelli
  • David Turner

    (OECD)

  • Maria Chiara Cavalleri

    (OECD)

Abstract

Inflation has become much less sensitive to movements in unemployment in recent decades. A common explanation for this change is that inflation expectations have become better anchored as a consequence of credible inflation targeting by central banks. In order to evaluate this hypothesis, the paper compares two competing empirical specifications across all OECD economies, where competing specifications correspond to the ‘former’ and ‘new’ specification for deriving measures of the unemployment gap which underlie the OECD’s Economic Outlook projections. The former OECD specification can be characterised as a traditional ‘backward-looking’ Phillips curve, where current inflation is partly explained by an autoregressive distributed lag process of past inflation representing both inertia and inflation expectations formed on the basis of recent inflation outcomes. Conversely, the new approach adjusts this specification to incorporate the notion that inflation expectations are anchored around the central bank’s inflation objective. The main finding of the paper is that the latter approach systematically out-performs the former for an overwhelming majority of OECD countries over a recent sample period. Relative to the backward-looking specification, the anchored expectations approach also tends to imply larger unemployment gaps for those countries for which actual unemployment has increased the most. Moreover, the anchored expectations Phillips curve reduces real-time revisions to the unemployment gap, although these still remain uncomfortably large, in the case of countries where there have been large changes in unemployment. Intégrer des anticipations ancrées d'inflation à la courbe de Phillips pour le calcul de mesures du chômage d'équilibre L'inflation est devenue beaucoup moins sensible aux fluctuations du chômage au cours des dernières décennies. Une explication couramment avancée à cet égard, est que l'ancrage des anticipations d'inflation s'est amélioré. Ni cette explication ni l'approche économétrique retenue ne sont nouvelles, mais un des apports de ce document tient au fait que nous y utilisons deux spécifications économétriques différentes pour l'ensemble des économies de l'OCDE, celles-ci correspondant à l'« ancienne » et à la « nouvelle » spécifications employées pour calculer les mesures de l'écart de chômage sur lesquelles reposent les prévisions des Perspectives économiques de l'OCDE. L'ancienne spécification employée par l'OCDE peut être caractérisée comme une courbe de Phillips « rétrospective » classique, suivant laquelle l'inflation est expliquée en partie à l'aide d'un modèle autorégressif à retards échelonnés appliqué à l'inflation antérieure, représentant à la fois l'inertie de l'inflation et les anticipations d'inflation formées sur la base des récents résultats d'inflation. Inversement, la nouvelle approche consiste à ajuster cette spécification de manière à intégrer la notion que les anticipations d'inflation sont ancrées aux alentours de l'objectif d'inflation de la banque centrale. La principale conclusion de ce document est que la nouvelle approche donne systématiquement de meilleurs résultats que l'ancienne pour une écrasante majorité de pays de l'OCDE sur une période d'observation récente. Par rapport à la spécification rétrospective, l'approche fondée sur les anticipations ancrées tend également à mettre en évidence des écarts de chômage plus importants pour les pays où le taux de chômage effectif a le plus augmenté. En outre, la courbe de Phillips fondée sur des anticipations ancrées réduit les révisions en temps réel de l'écart de chômage, même si celles-ci restent d'une ampleur préoccupante, dans le cas des pays où le chômage a fortement varié.

Suggested Citation

  • Elena Rusticelli & David Turner & Maria Chiara Cavalleri, 2015. "Incorporating Anchored Inflation Expectations in the Phillips Curve and in the Derivation of OECD Measures of Equilibrium Unemployment," OECD Economics Department Working Papers 1231, OECD Publishing.
  • Handle: RePEc:oec:ecoaaa:1231-en
    DOI: 10.1787/5js1gmq551wd-en
    as

    Download full text from publisher

    File URL: https://doi.org/10.1787/5js1gmq551wd-en
    Download Restriction: no

    File URL: https://libkey.io/10.1787/5js1gmq551wd-en?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dany Brouillette & Marie-Noëlle Robitaille & Laurence Savoie-Chabot & Pierre St-Amant & Bassirou Gueye & Elise Martin, 2019. "The Trend Unemployment Rate in Canada: Searching for the Unobservable," Staff Working Papers 19-13, Bank of Canada.
    2. N. Nautet, 2018. "Full employment, mismatches and labour reserve," Economic Review, National Bank of Belgium, issue iv, pages 125-145, december.
    3. Jakub Bechný, 2019. "Unemployment Hysteresis in the Czech Republic," Prague Economic Papers, Prague University of Economics and Business, vol. 2019(5), pages 532-546.
    4. Laurence Ball & Joern Onken, 2022. "Hysteresis in unemployment: Evidence from OECD estimates of the natural rate," International Finance, Wiley Blackwell, vol. 25(3), pages 268-284, December.
    5. Carlos Medel, 2018. "An econometric analysis on survey-data-based anchoring of inflation expectations in Chile," Notas de Investigación Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 21(2), pages 128-152, August.
    6. repec:prg:jnlpep:v:preprint:id:709:p:1-15 is not listed on IDEAS
    7. Alberto Naudon & Joaquín Vial, 2016. "The evolution of inflation in Chile since 2000," BIS Papers chapters, in: Bank for International Settlements (ed.), Inflation mechanisms, expectations and monetary policy, volume 89, pages 93-116, Bank for International Settlements.
    8. Fioramanti, Marco, 2016. "Potential Output, Output Gap and Fiscal Stance: is the EC estimation of the NAWRU too sensitive to be reliable?," MPRA Paper 73762, University Library of Munich, Germany, revised Sep 2016.
    9. Pierrette Heuse & Ilse Rubbrecht, 2018. "Recent developments in the financial situation and the social data of non-financial corporations," Economic Review, National Bank of Belgium, issue iv, pages 146-186, december.
    10. Fioramanti, Marco & Waldmann, Robert J., 2017. "The Econometrics of the EU Fiscal Governance: is the European Commission methodology still adequate?," MPRA Paper 81858, University Library of Munich, Germany.
    11. Patrik Kupkovic, 2020. "R-star in Transition Economies: Evidence from Slovakia," Working and Discussion Papers WP 3/2020, Research Department, National Bank of Slovakia.
    12. Inayat U. Mangla & Kalim Hyder, 2017. "Global Uncertainty and Monetary Policy Effectiveness in Pakistan," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 22(Special E), pages 111-134, September.
    13. Punnoose Jacob & Martin Wong, 2018. "Estimating the NAIRU and the Natural Rate of Unemployment for New Zealand," Reserve Bank of New Zealand Analytical Notes series AN2018/04, Reserve Bank of New Zealand.
    14. Eddie Casey, 2019. "Inside the "Upside Down": Estimating Ireland's Output Gap," The Economic and Social Review, Economic and Social Studies, vol. 50(1), pages 5-34.
    15. Yui Kishaba & Tatsushi Okuda, 2023. "The Slope of the Phillips Curve for Service Prices in Japan: Regional Panel Data Approach," Bank of Japan Working Paper Series 23-E-8, Bank of Japan.

    More about this item

    Keywords

    Anchored expectations; anticipations ancrées; chômage d’équilibre; courbe de Phillips; equilibrium unemployment; Phillips curve; real-time revisions; révisions en temps réel;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • J64 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Unemployment: Models, Duration, Incidence, and Job Search

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oec:ecoaaa:1231-en. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/edoecfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.