IDEAS home Printed from https://ideas.repec.org/p/oec/ecoaaa/1048-en.html
   My bibliography  Save this paper

A Projection Method for Public Health and Long-Term Care Expenditures

Author

Listed:
  • Christine de la Maisonneuve

    (OECD)

  • Joaquim Oliveira Martins

    (OECD)

Abstract

This paper proposes a new set of public health and long-term care expenditure projections until 2060, seven years after a first set of projections was published by the OECD. It disentangles health from longterm care expenditure, as well as the demographic from the non-demographic drivers, and refines the previous methodology, in particular by extending the country coverage. Regarding health care, nondemographic drivers are identified, with an attempt to better understand the residual expenditure growth by determining which share can be explained by the evolution of health prices and technology effects. Concerning LTC, an estimation of the determinants of the number of dependants (people needing help in their daily life activities) is provided. A cost-containment and a cost-pressure scenario are provided, together with sensitivity analysis. On average across OECD countries, total health and long-term care expenditure is projected to increase by 3.3 and 7.7 percentage points of GDP between 2010 and 2060 in the cost-containment and the cost-pressure scenarios respectively. For the BRIICS over the same period, it is projected to increase by 2.8 and 7.3 percentage points of GDP in the cost-containment and the costpressure scenarios respectively. Une méthode de prévisions des dépenses publiques de santé et de soins de longue durée Ce papier présente une nouvelle série de projections des dépenses publiques de santé et de soins de longue durée jusqu’en 2060, sept ans après la publication d’une première série de projections par l’OCDE. Le papier étudie la santé et les soins de longue durée séparément ainsi que les déterminants démographiques et non-démographiques et il affine la méthodologie adoptée précédemment, en particulier, en augmentant le nombre de pays couverts. En ce qui concerne la santé, les déterminants non-démographiques sont identifiés, l’analyse effectuée dans ce papier tentant de mieux comprendre la croissance résiduelle des dépenses en déterminant quelle part peut être attribuée à l’évolution des prix de la santé et de la technologie. En ce qui concerne les soins de longue durée, une estimation des déterminants du nombre de dépendants (personnes nécessitant de l’aide dans les activités de la vie quotidienne) est utilisée. Un scénario de maîtrise des coûts et un scénario de tension sur les coûts sont élaborés ainsi qu’une analyse de sensibilité. En moyenne sur l’ensemble des pays de l’OCDE, entre 2010 et 2060, le total des dépenses de santé et de soins de longue durée devrait augmenter de 3.3 points de pourcentage de PIB dans le scénario de maîtrise des coûts et de 7.7 points de pourcentage de PIB dans le scénario de tension sur les coûts. Pour les BRIICS sur la même période, il devrait augmenter de 2.8 points de pourcentage du PIB dans le scenario de maîtrise des coûts et de 7.3 points de pourcentage dans le scenario de tension sur les coûts.

Suggested Citation

  • Christine de la Maisonneuve & Joaquim Oliveira Martins, 2013. "A Projection Method for Public Health and Long-Term Care Expenditures," OECD Economics Department Working Papers 1048, OECD Publishing.
  • Handle: RePEc:oec:ecoaaa:1048-en
    DOI: 10.1787/5k44v53w5w47-en
    as

    Download full text from publisher

    File URL: https://doi.org/10.1787/5k44v53w5w47-en
    Download Restriction: no

    File URL: https://libkey.io/10.1787/5k44v53w5w47-en?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ni, Xinwen, 2019. "The role of medical expenses in the saving decision of elderly: a life cycle model," IRTG 1792 Discussion Papers 2019-011, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. Debra Bloch & Falilou Fall, 2016. "Government Debt Indicators:Understanding the Data," Journal of International Commerce, Economics and Policy (JICEP), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-28, February.
    3. Mikkel Hermansen & Oliver Röhn, 2017. "Economic resilience: The usefulness of early warning indicators in OECD countries," OECD Journal: Economic Studies, OECD Publishing, vol. 2016(1), pages 9-35.
    4. Anthony Harris & Anurag Sharma, 2018. "Estimating the future health and aged care expenditure in Australia with changes in morbidity," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-10, August.
    5. Ni, Xinwen, 2019. "Voting for Health Insurance Policy: the U.S. versus Europe," IRTG 1792 Discussion Papers 2019-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    6. Xiaohui You & Albert A. Okunade, 2017. "Income and Technology as Drivers of Australian Healthcare Expenditures," Health Economics, John Wiley & Sons, Ltd., vol. 26(7), pages 853-862, July.
    7. Christine de la Maisonneuve & Rodrigo Moreno‐Serra & Fabrice Murtin & Joaquim Oliveira Martins, 2017. "The Role of Policy and Institutions on Health Spending," Health Economics, John Wiley & Sons, Ltd., vol. 26(7), pages 834-843, July.
    8. Alessandro Bucciol & Laura Cavalli & Igor Fedotenkov & Paolo Pertile & Veronica Polin & Nicola Sartor & Alessandro Sommacal, 2015. "Public policies over the life cycle: a large scale OLG model for France, Italy and Sweden," Working Papers 29/2015, University of Verona, Department of Economics.
    9. Henrik Braconier & Giuseppe Nicoletti & Ben Westmore, 2015. "Policy challenges for the next 50 years," OECD Journal: Economic Studies, OECD Publishing, vol. 2015(1), pages 9-66.
    10. Fan, Victoria Y. & Savedoff, William D., 2014. "The health financing transition: A conceptual framework and empirical evidence," Social Science & Medicine, Elsevier, vol. 105(C), pages 112-121.
    11. Anita Charlesworth & Sarah Lafond, 2017. "Shifting from Undersupply to Oversupply: Does NHS Workforce Planning Need a Paradigm Shift?," Economic Affairs, Wiley Blackwell, vol. 37(1), pages 36-52, February.
    12. Younsi, Moheddine & Bechtini, Marwa, 2020. "Développement de l'assurance, dépenses de santé et croissance économique dans les pays de l'OCDE: Nouvelle approche de causalité en panel [Insurance Development, Health Expenditure and Economic Gro," MPRA Paper 99091, University Library of Munich, Germany.
    13. Lassila, Jukka & Valkonen, Tarmo, 2019. "Alternative Demography-based Projection Approaches for Public Health and Long-term Care Expenditure," ETLA Working Papers 74, The Research Institute of the Finnish Economy.
    14. Oliver Röhn & Aida Caldera Sánchez & Mikkel Hermansen & Morten Rasmussen, 2015. "Economic resilience: A new set of vulnerability indicators for OECD countries," OECD Economics Department Working Papers 1249, OECD Publishing.
    15. Sergey Sinelnikov-Murylev & Eugene Goryunov & Laurence Kotlikoff, 2015. "Theoretical foundations of fiscal gap as a long-term fiscal sustainability indicator and its estimates for Russia," Research Paper Series, Gaidar Institute for Economic Policy, issue 168P, pages 1-58.
    16. Ahmed, S. Amer & Vargas Da Cruz,Marcio Jose & Quillin,Bryce Ramsey & Schellekens,Philip, 2016. "Demographic change and development : a global typology," Policy Research Working Paper Series 7893, The World Bank.
    17. Mauro Laudicella & Paolo Li Donni & Kim Rose Olsen & Dorte Gyrd‐Hansen, 2022. "Age, morbidity, or something else? A residual approach using microdata to measure the impact of technological progress on health care expenditure," Health Economics, John Wiley & Sons, Ltd., vol. 31(6), pages 1184-1201, June.
    18. Goryunov, Yevgeniy (Горюнов, Евгений), 2016. "Theoretical foundations, properties and interpretation of the budget gap indicators [Теоретические Основы, Свойства И Интерпретация Индикаторов Бюджетного Разрыва]," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 2, pages 112-132, April.
    19. E. Goryunov & L. Kotlikoff & S. Sinelnikov-Murylev, 2015. "Fiscal Gap: an Estimate for Russia," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 7.
    20. Jukka Lassila & Tarmo Valkonen, 2014. "Health and Long-Term Care Expenditure in Finland When Living Alone Increases," Nordic Journal of Political Economy, Nordic Journal of Political Economy, vol. 39, pages 1-1.
    21. Victoria Fan and William Savedoff, 2014. "The Health Financing Transition: A Conceptual Framework and Empirical Evidence - Working Paper 358," Working Papers 358, Center for Global Development.
    22. Christine de la Maisonneuve & Joaquim Oliveira Martins, 2013. "Public Spending on Health and Long-term Care: A new set of projections," OECD Economic Policy Papers 6, OECD Publishing.

    More about this item

    Keywords

    ageing populations; demographic and non-demographic effects; dépenses publiques de santé; dépenses publiques de soins à long terme; effets démographiques et non démographiques; long-term care expenditures; longevity; longévité; méthodes de projection; projection methods; public health expenditures; vieillissement de la population;
    All these keywords.

    JEL classification:

    • H51 - Public Economics - - National Government Expenditures and Related Policies - - - Government Expenditures and Health
    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts
    • J14 - Labor and Demographic Economics - - Demographic Economics - - - Economics of the Elderly; Economics of the Handicapped; Non-Labor Market Discrimination

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oec:ecoaaa:1048-en. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/edoecfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.