IDEAS home Printed from https://ideas.repec.org/p/not/notgts/10-01.html
   My bibliography  Save this paper

Robust methods for detecting multiple level breaks in autocorrelated time series

Author

Listed:
  • David I. Harvey
  • Stephen J. Leybourne
  • A. M. Robert Taylor

Abstract

In this paper we propose tests for the null hypothesis that a time series process displays a constant level against the alternative that it displays (possibly) multiple changes in level. Our proposed tests are based on functions of appropriately standardized sequences of the differences between sub-sample mean estimates from the series under investigation. The tests we propose differ notably from extant tests for level breaks in the literature in that they are designed to be robust as to whether the process admits an autoregressive unit root (the data are I(1)) or stable autoregressive roots (the data are I(0)). We derive the asymptotic null distributions of our proposed tests, along with representations for their asymptotic local power functions against Pitman drift alternatives under both I(0) and I(1) environments. Associated estimators of the level break fractions are also discussed. We initially outline our procedure through the case of non-trending series, but our analysis is subsequently extended to allow for series which display an underlying linear trend, in addition to possible level breaks. Monte Carlo simulation results are presented which suggest that the proposed tests perform well in small samples, showing good size control under the null, regardless of the order of integration of the data, and displaying very decent power when level breaks occur.

Suggested Citation

  • David I. Harvey & Stephen J. Leybourne & A. M. Robert Taylor, 2010. "Robust methods for detecting multiple level breaks in autocorrelated time series," Discussion Papers 10/01, University of Nottingham, Granger Centre for Time Series Econometrics.
  • Handle: RePEc:not:notgts:10/01
    as

    Download full text from publisher

    File URL: https://www.nottingham.ac.uk/research/groups/grangercentre/documents/10-01.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pierre Perron & Gabriel Rodríguez, 2003. "Searching For Additive Outliers In Nonstationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 193-220, March.
    2. Bunzel, Helle & Vogelsang, Timothy J., 2005. "Powerful Trend Function Tests That Are Robust to Strong Serial Correlation, With an Application to the Prebisch-Singer Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 381-394, October.
    3. Perron, Pierre & Zhu, Xiaokang, 2005. "Structural breaks with deterministic and stochastic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 65-119.
    4. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Simple, Robust, And Powerful Tests Of The Breaking Trend Hypothesis," Econometric Theory, Cambridge University Press, vol. 25(4), pages 995-1029, August.
    5. Mohitosh Kejriwal & Pierre Perron, 2010. "A sequential procedure to determine the number of breaks in trend with an integrated or stationary noise component," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 305-328, September.
    6. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    7. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    8. Peter Burridge & A. M. Robert Taylor, 2006. "Additive Outlier Detection Via Extreme‐Value Theory," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(5), pages 685-701, September.
    9. Perron, Pierre & Yabu, Tomoyoshi, 2009. "Testing for Shifts in Trend With an Integrated or Stationary Noise Component," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 369-396.
    10. Perron, Pierre & Vogelsang, Timothy J, 1992. "Testing for a Unit Root in a Time Series with a Changing Mean: Corrections and Extensions," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 467-470, October.
    11. Perron, Pierre & Yabu, Tomoyoshi, 2009. "Estimating deterministic trends with an integrated or stationary noise component," Journal of Econometrics, Elsevier, vol. 151(1), pages 56-69, July.
    12. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    13. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    14. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Unit Root Testing In Practice: Dealing With Uncertainty Over The Trend And Initial Condition," Econometric Theory, Cambridge University Press, vol. 25(3), pages 587-636, June.
    15. Leisch, Friedrich & Hornik, Kurt & Kuan, Chung-Ming, 2000. "Monitoring Structural Changes With The Generalized Fluctuation Test," Econometric Theory, Cambridge University Press, vol. 16(6), pages 835-854, December.
    16. Sayginsoy, Özgen & Vogelsang, Timothy J., 2011. "Testing For A Shift In Trend At An Unknown Date: A Fixed-B Analysis Of Heteroskedasticity Autocorrelation Robust Ols-Based Tests," Econometric Theory, Cambridge University Press, vol. 27(5), pages 992-1025, October.
    17. Timothy J. Vogelsang, 1998. "Trend Function Hypothesis Testing in the Presence of Serial Correlation," Econometrica, Econometric Society, vol. 66(1), pages 123-148, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David I. Harvey & Stephen J. Leybourne & A. M. Robert Taylor, 2009. "Robust methods for detecting multiple level breaks in autocorrelated time series [Revised to become No. 10/01 above]," Discussion Papers 09/01, University of Nottingham, Granger Centre for Time Series Econometrics.
    2. Skrobotov, Anton, 2020. "Survey on structural breaks and unit root tests," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 58, pages 96-141.
    3. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    4. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2012. "Unit root testing under a local break in trend," Journal of Econometrics, Elsevier, vol. 167(1), pages 140-167.
    5. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    6. Mohitosh Kejriwal & Claude Lopez, 2013. "Unit Roots, Level Shifts, and Trend Breaks in Per Capita Output: A Robust Evaluation," Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 892-927, November.
    7. Harvey, David I. & Leybourne, Stephen J., 2015. "Confidence sets for the date of a break in level and trend when the order of integration is unknown," Journal of Econometrics, Elsevier, vol. 184(2), pages 262-279.
    8. Ghoshray, Atanu & Kejriwal, Mohitosh & Wohar, Mark E., 2011. "Breaking Trends and the Prebisch-Singer Hypothesis: A Further Investigation," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 120387, European Association of Agricultural Economists.
    9. Nuno Sobreira & Luis C. Nunes, 2016. "Tests for Multiple Breaks in the Trend with Stationary or Integrated Shocks," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(3), pages 394-411, June.
    10. Skrobotov Anton, 2018. "On Trend Breaks and Initial Condition in Unit Root Testing," Journal of Time Series Econometrics, De Gruyter, vol. 10(1), pages 1-15, January.
    11. Seong Yeon Chang & Pierre Perron, 2016. "Inference on a Structural Break in Trend with Fractionally Integrated Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 555-574, July.
    12. Nuno Sobreira & Luis C. Nunes & Paulo M. M. Rodrigues, 2014. "Characterizing Economic Growth Paths Based On New Structural Change Tests," Economic Inquiry, Western Economic Association International, vol. 52(2), pages 845-861, April.
    13. Ghoshray, Atanu & Ordóñez, Javier & Sala, Hector, 2016. "Euro, crisis and unemployment: Youth patterns, youth policies?," Economic Modelling, Elsevier, vol. 58(C), pages 442-453.
    14. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2013. "Testing for unit roots in the possible presence of multiple trend breaks using minimum Dickey–Fuller statistics," Journal of Econometrics, Elsevier, vol. 177(2), pages 265-284.
    15. Ghoshray Atanu & Kejriwal Mohitosh & Wohar Mark, 2014. "Breaks, trends and unit roots in commodity prices: a robust investigation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(1), pages 23-40, February.
    16. Pierre Perron, 2017. "Unit Roots and Structural Breaks," Econometrics, MDPI, vol. 5(2), pages 1-3, May.
    17. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    18. Pierre Perron & Eduardo Zorita & Timothy J. Vogelsang & Nasreen Nawaz, 2017. "Estimation and Inference of Linear Trend Slope Ratios With an Application to Global Temperature Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 640-667, September.
    19. Zaklan, Aleksandar & Abrell, Jan & Neumann, Anne, 2016. "Stationarity changes in long-run energy commodity prices," Energy Economics, Elsevier, vol. 59(C), pages 96-103.
    20. Mohitosh Kejriwal, 2020. "A Robust Sequential Procedure for Estimating the Number of Structural Changes in Persistence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(3), pages 669-685, June.

    More about this item

    Keywords

    Level breaks; unit root; moving means; long run variance estimation; robust tests; breakpoint estimation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:not:notgts:10/01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsnotuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.