IDEAS home Printed from https://ideas.repec.org/p/ngi/dpaper/07-09.html
   My bibliography  Save this paper

Separation of uncontrollable factors and time shift effects from DEA scores

Author

Listed:
  • Miki Tsutsui

    (Central Research Institute of Electric Power Industry)

  • Kaoru Tone

    (National Graduate Institute for Policy Studies)

Abstract

It has been pointed out that DEA scores may be influenced by several external environmental factors, which are uncontrollable for DMUs. It implies that the DEA efficiency score without data adjustment might be biased and impractical for measuring genuine management efficiency. Therefore it is essential to eliminate uncontrollable effects from DEA scores and evaluate “pure” managerial efficiency for DMUs. In an effort to solve this problem, we employ a multi-stage data adjustment procedure using DEA and regression models, which is originally proposed by Fried et al. [1999] consisting of four stages. In this study, we further modify this procedure by introducing newly developed devices in each stage; Connected Slacks-Based Measure (CSBM) model at the first and fourth stages, the Tobit model with DMU dummies at the second stage, and a data tuning procedure at the third stage. Then we decompose the technical inefficiency into three factors, i.e. environmental effects, time shift effects and pure technical inefficiency. Lastly, we apply this procedure to the electric power utilities in Japan and the US and compare their pure technical efficiency and causes of inefficiency.

Suggested Citation

  • Miki Tsutsui & Kaoru Tone, 2007. "Separation of uncontrollable factors and time shift effects from DEA scores," GRIPS Discussion Papers 07-09, National Graduate Institute for Policy Studies.
  • Handle: RePEc:ngi:dpaper:07-09
    as

    Download full text from publisher

    File URL: https://grips.repo.nii.ac.jp/?action=repository_action_common_download&item_id=979&item_no=1&attribute_id=20&file_no=1
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harold Fried & Shelton Schmidt & Suthathip Yaisawarng, 1999. "Incorporating the Operating Environment Into a Nonparametric Measure of Technical Efficiency," Journal of Productivity Analysis, Springer, vol. 12(3), pages 249-267, November.
    2. Fried, Harold O. & Knox Lovell, C. A. & Eeckaut, Philippe Vanden, 1993. "Evaluating the performance of US credit unions," Journal of Banking & Finance, Elsevier, vol. 17(2-3), pages 251-265, April.
    3. H. Fried & C. Lovell & S. Schmidt & S. Yaisawarng, 2002. "Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 17(1), pages 157-174, January.
    4. Timmer, C P, 1971. "Using a Probabilistic Frontier Production Function to Measure Technical Efficiency," Journal of Political Economy, University of Chicago Press, vol. 79(4), pages 776-794, July-Aug..
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Drake, Leigh & Hall, Maximilian J.B. & Simper, Richard, 2006. "The impact of macroeconomic and regulatory factors on bank efficiency: A non-parametric analysis of Hong Kong's banking system," Journal of Banking & Finance, Elsevier, vol. 30(5), pages 1443-1466, May.
    7. A. Charnes & W. W. Cooper & E. Rhodes, 1981. "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through," Management Science, INFORMS, vol. 27(6), pages 668-697, June.
    8. George E. Battese & Greg S. Corra, 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 169-179, December.
    9. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    10. Bhattacharyya, Arunava & Lovell, C. A. K. & Sahay, Pankaj, 1997. "The impact of liberalization on the productive efficiency of Indian commercial banks," European Journal of Operational Research, Elsevier, vol. 98(2), pages 332-345, April.
    11. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    12. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Tiantian & Nakagawa, Kei & Matsumoto, Ken'ichi, 2023. "Evaluating solar photovoltaic power efficiency based on economic dimensions for 26 countries using a three-stage data envelopment analysis," Applied Energy, Elsevier, vol. 335(C).
    2. Necmi Avkiran & Kaoru Tone & Miki Tsutsui, 2008. "Bridging radial and non-radial measures of efficiency in DEA," Annals of Operations Research, Springer, vol. 164(1), pages 127-138, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    2. Chiu, Yung-Ho & Chen, Yu-Chuan, 2009. "The analysis of Taiwanese bank efficiency: Incorporating both external environment risk and internal risk," Economic Modelling, Elsevier, vol. 26(2), pages 456-463, March.
    3. Avkiran, Necmi K. & Rowlands, Terry, 2008. "How to better identify the true managerial performance: State of the art using DEA," Omega, Elsevier, vol. 36(2), pages 317-324, April.
    4. Avkiran, Necmi K., 2009. "Removing the impact of environment with units-invariant efficient frontier analysis: An illustrative case study with intertemporal panel data," Omega, Elsevier, vol. 37(3), pages 535-544, June.
    5. Yang, Hongliang & Pollitt, Michael, 2009. "Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
    6. C. Lovell & Shawna Grosskopf & Eduardo Ley & Jesús Pastor & Diego Prior & Philippe Eeckaut, 1994. "Linear programming approaches to the measurement and analysis of productive efficiency," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 2(2), pages 175-248, December.
    7. Surakiat PARICHATNON & Kamonthip MAICHUM & Ke-Chung PENG, 2018. "Measuring technical efficiency of Thai rubber production using the three-stage data envelopment analysis," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(5), pages 227-240.
    8. Tsutsui, Miki & Goto, Mika, 2009. "A multi-division efficiency evaluation of U.S. electric power companies using a weighted slacks-based measure," Socio-Economic Planning Sciences, Elsevier, vol. 43(3), pages 201-208, September.
    9. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, April.
    10. Meryem Duygun Fethi & Mohamed Shaban & Thomas Weyman-Jones, 2009. "Liberalisation, privatisation and the productivity of Egyptian banks: a non-parametric approach," The Service Industries Journal, Taylor & Francis Journals, vol. 31(7), pages 1143-1163, September.
    11. Forsund, Finn R. & Sarafoglou, Nikias, 2005. "The tale of two research communities: The diffusion of research on productive efficiency," International Journal of Production Economics, Elsevier, vol. 98(1), pages 17-40, October.
    12. Tavana, Madjid & Ebrahimnejad, Ali & Santos-Arteaga, Francisco J. & Mansourzadeh, Seyed Mehdi & Matin, Reza Kazemi, 2018. "A hybrid DEA-MOLP model for public school assessment and closure decision in the City of Philadelphia," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 70-89.
    13. Hall, Maximilian J.B. & Kenjegalieva, Karligash A. & Simper, Richard, 2012. "Environmental factors affecting Hong Kong banking: A post-Asian financial crisis efficiency analysis," Global Finance Journal, Elsevier, vol. 23(3), pages 184-201.
    14. Kristof De Witte & Laura López-Torres, 2017. "Efficiency in education: a review of literature and a way forward," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(4), pages 339-363, April.
    15. Murillo-Zamorano, Luis R. & Vega-Cervera, Juan A., 2001. "The use of parametric and non-parametric frontier methods to measure the productive efficiency in the industrial sector: A comparative study," International Journal of Production Economics, Elsevier, vol. 69(3), pages 265-275, February.
    16. J M Cordero-Ferrera & F Pedraja-Chaparro & D Santín-González, 2010. "Enhancing the inclusion of non-discretionary inputs in DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 574-584, April.
    17. Catalán, Beatriz & Trívez, F. Javier, 2006. "Effects of the additive Outliers in the forecasting of the conditional variance of an Arch model/Efectos de los Outliers aditivos en la predicción de la varianza condicional de un modelo Arch," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 24, pages 531-543, Abril.
    18. Daniel Santín, 2006. "Measuring technical efficiency in schools: a critic revision," Hacienda Pública Española / Review of Public Economics, IEF, vol. 177(2), pages 57-82, April.
    19. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    20. Huguenin, Jean-Marc, 2015. "Adjusting for the environment in DEA: A comparison of alternative models based on empirical data," Socio-Economic Planning Sciences, Elsevier, vol. 52(C), pages 41-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ngi:dpaper:07-09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gripsjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.