IDEAS home Printed from https://ideas.repec.org/p/net/wpaper/0921.html
   My bibliography  Save this paper

Manipulation Robustness of Collaborative Filtering Systems

Author

Abstract

A collaborative filtering system recommends to users products that similar users like. Collaborative filtering systems influence purchase decisions, and hence have become targets of manipulation by unscrupulous vendors. We provide theoretical and empirical results demonstrating that while common nearest neighbor algorithms, which are widely used in commercial systems, can be highly susceptible to manipulation, two classes of collaborative filtering algorithms which we refer to as linear and asymptotically linear are relatively robust. These results provide guidance for the design of future collaborative filtering systems.

Suggested Citation

  • Benjamin Van Roy & Xiang Yan, 2009. "Manipulation Robustness of Collaborative Filtering Systems," Working Papers 09-21, NET Institute, revised Sep 2009.
  • Handle: RePEc:net:wpaper:0921
    as

    Download full text from publisher

    File URL: http://www.netinst.org/Van-Roy_Yan_09-21.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nolan Miller & Paul Resnick & Richard Zeckhauser, 2005. "Eliciting Informative Feedback: The Peer-Prediction Method," Management Science, INFORMS, vol. 51(9), pages 1359-1373, September.
    2. Gossner, Olivier & Tomala, Tristan, 2008. "Entropy bounds on Bayesian learning," Journal of Mathematical Economics, Elsevier, vol. 44(1), pages 24-32, January.
    3. Chrysanthos Dellarocas, 2006. "Strategic Manipulation of Internet Opinion Forums: Implications for Consumers and Firms," Management Science, INFORMS, vol. 52(10), pages 1577-1593, October.
    4. Sangkil Moon & Gary J. Russell, 2008. "Predicting Product Purchase from Inferred Customer Similarity: An Autologistic Model Approach," Management Science, INFORMS, vol. 54(1), pages 71-82, January.
    5. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    6. repec:dau:papers:123456789/6067 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Van Roy & Xiang Yan, 2010. "Manipulation Robustness of Collaborative Filtering," Management Science, INFORMS, vol. 56(11), pages 1911-1929, November.
    2. Andres Hervas-Drane, 2007. "Word of Mouth and Taste Matching: A Theory of the Long Tail," Working Papers 07-41, NET Institute, revised Jan 2009.
    3. Nachiketa Sahoo & Ramayya Krishnan & George Duncan & Jamie Callan, 2012. "Research Note ---The Halo Effect in Multicomponent Ratings and Its Implications for Recommender Systems: The Case of Yahoo! Movies," Information Systems Research, INFORMS, vol. 23(1), pages 231-246, March.
    4. Daria Dzyabura & John R. Hauser, 2019. "Recommending Products When Consumers Learn Their Preference Weights," Marketing Science, INFORMS, vol. 38(3), pages 417-441, May.
    5. Weijia (Daisy) Dai & Ginger Jin & Jungmin Lee & Michael Luca, 2018. "Aggregation of consumer ratings: an application to Yelp.com," Quantitative Marketing and Economics (QME), Springer, vol. 16(3), pages 289-339, September.
    6. Hervas-Drane, Andres, 2015. "Recommended for you: The effect of word of mouth on sales concentration," International Journal of Research in Marketing, Elsevier, vol. 32(2), pages 207-218.
    7. Özden Gür Ali & Yalçın Akçay & Serdar Sayman & Emrah Y?lmaz & M. Hamdi Özçelik, 2017. "Cross-Selling Investment Products with a Win-Win Perspective in Portfolio Optimization," Operations Research, INFORMS, vol. 65(1), pages 55-74, February.
    8. Özden Gür Ali & Yalçın Akçay & Serdar Sayman & Emrah Yılmaz & M. Hamdi Özçelik, 2017. "Cross-Selling Investment Products with a Win-Win Perspective in Portfolio Optimization," Operations Research, INFORMS, vol. 65(1), pages 55-74, February.
    9. Babur De los Santos & Sergei Koulayev, 2017. "Optimizing Click-Through in Online Rankings with Endogenous Search Refinement," Marketing Science, INFORMS, vol. 36(4), pages 542-564, July.
    10. Lawrence Bunnell & Kweku-Muata Osei-Bryson & Victoria Y. Yoon, 0. "RecSys Issues Ontology: A Knowledge Classification of Issues for Recommender Systems Researchers," Information Systems Frontiers, Springer, vol. 0, pages 1-42.
    11. Joanna Sokolowska & Patrycja Sleboda, 2015. "The Inverse Relation Between Risks and Benefits: The Role of Affect and Expertise," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1252-1267, July.
    12. Donald R. Haurin & Stuart S. Rosenthal, 2009. "Language, Agglomeration and Hispanic Homeownership," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(2), pages 155-183, June.
    13. Jong Won Min, 2019. "The Influence of Stigma and Views on Mental Health Treatment Effectiveness on Service Use by Age and Ethnicity: Evidence From the CDC BRFSS 2007, 2009, and 2012," SAGE Open, , vol. 9(3), pages 21582440198, September.
    14. Peysakhovich, Alexander & Plagborg-Møller, Mikkel, 2012. "A note on proper scoring rules and risk aversion," Economics Letters, Elsevier, vol. 117(1), pages 357-361.
    15. Alwang, Jeffrey & Larochelle, Catherine & Barrera, Victor, 2017. "Farm Decision Making and Gender: Results from a Randomized Experiment in Ecuador," World Development, Elsevier, vol. 92(C), pages 117-129.
    16. Heyes, Anthony & Kapur, Sandeep, 2012. "Angry customers, e-word-of-mouth and incentives for quality provision," Journal of Economic Behavior & Organization, Elsevier, vol. 84(3), pages 813-828.
    17. Yanina Welp & Ferran Urgell & Eduard Aibar, 2007. "From Bureaucratic Administration to Network Administration? An Empirical Study on E-Government Focus on Catalonia," Public Organization Review, Springer, vol. 7(4), pages 299-316, December.
    18. Wu, Xingli & Liao, Huchang, 2021. "Modeling personalized cognition of customers in online shopping," Omega, Elsevier, vol. 104(C).
    19. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    20. Brent Hammer & Helen Vallianatos & Candace Nykiforuk & Laura Nieuwendyk, 2015. "Perceptions of healthy eating in four Alberta communities: a photovoice project," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(4), pages 649-662, December.

    More about this item

    Keywords

    recommendation system; collaborative filtering; manipulation; information theory; statistics;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:net:wpaper:0921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nicholas Economides (email available below). General contact details of provider: http://www.NETinst.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.