IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/7933.html
   My bibliography  Save this paper

The Distribution of Stock Return Volatility

Author

Listed:
  • Torben G. Andersen
  • Tim Bollerslev
  • Francis X. Diebold
  • Heiko Ebens

Abstract

We exploit direct model-free measures of daily equity return volatility and correlation obtained from high-frequency intraday transaction prices on individual stocks in the Dow Jones Industrial Average over a five-year period to confirm, solidify and extend existing characterizations of stock return volatility and correlation. We find that the unconditional distributions of the variances and covariances for all thirty stocks are leptokurtic and highly skewed to the right, while the logarithmic standard deviations and correlations all appear approximately Gaussian. Moreover, the distributions of the returns scaled by the realized standard deviations are also Gaussian. Consistent with our documentation of remarkably precise scaling laws under temporal aggregation, the realized logarithmic standard deviations and correlations all show strong temporal dependence and appear to be well described by long-memory processes. Positive returns have less impact on future variances and correlations than negative returns of the same absolute magnitude, although the economic importance of this asymmetry is minor. Finally, there is strong evidence that equity volatilities and correlations move together, possibly reducing the benefits to portfolio diversification when the market is most volatile. Our findings are broadly consistent with a latent volatility fact or structure, and they set the stage for improved high-dimensional volatility modeling and out-of-sample forecasting, which in turn hold promise for the development of better decision making in practical situations of risk management, portfolio allocation, and asset pricing.

Suggested Citation

  • Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Heiko Ebens, 2000. "The Distribution of Stock Return Volatility," NBER Working Papers 7933, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:7933
    Note: AP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w7933.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    2. John Y. Campbell & Martin Lettau & Burton G. Malkiel & Yexiao Xu, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    4. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    5. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2000. "Exchange Rate Returns Standardized by Realized Volatility are (Nearly) Gaussian," Multinational Finance Journal, Multinational Finance Journal, vol. 4(3-4), pages 159-179, September.
    7. Andersen, Torben G & Bollerslev, Tim, 1997. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    8. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    9. Young-Hye Cho & Robert F. Engle, 1999. "Time-Varying Betas and Asymmetric Effect of News: Empirical Analysis of Blue Chip Stocks," NBER Working Papers 7330, National Bureau of Economic Research, Inc.
    10. Braun, Phillip A & Nelson, Daniel B & Sunier, Alain M, 1995. "Good News, Bad News, Volatility, and Betas," Journal of Finance, American Finance Association, vol. 50(5), pages 1575-1603, December.
    11. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    12. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    13. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    14. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    15. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Heiko Ebens, 2000. "The Distribution of Stock Return Volatility," Center for Financial Institutions Working Papers 00-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    16. Bollerslev, Tim & Ole Mikkelsen, Hans, 1999. "Long-term equity anticipation securities and stock market volatility dynamics," Journal of Econometrics, Elsevier, vol. 92(1), pages 75-99, September.
    17. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    18. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    19. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    20. Crato, Nuno & de Lima, Pedro J. F., 1994. "Long-range dependence in the conditional variance of stock returns," Economics Letters, Elsevier, vol. 45(3), pages 281-285.
    21. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    2. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    5. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    6. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    7. Alemany, Nuria & Aragó, Vicent & Salvador, Enrique, 2020. "The distribution of index futures realised volatility under seasonality and microstructure noise," Economic Modelling, Elsevier, vol. 93(C), pages 398-414.
    8. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    9. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    10. Thomakos, Dimitrios D. & Wang, Tao, 2003. "Realized volatility in the futures markets," Journal of Empirical Finance, Elsevier, vol. 10(3), pages 321-353, May.
    11. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    12. Pedro J. F. de Lima & Michelle L. Barnes, 2000. "Modeling Financial Volatility: Extreme Observations, Nonlinearities and Nonstationarities," School of Economics and Public Policy Working Papers 2000-05, University of Adelaide, School of Economics and Public Policy.
    13. Bollerslev, Tim, 2001. "Financial econometrics: Past developments and future challenges," Journal of Econometrics, Elsevier, vol. 100(1), pages 41-51, January.
    14. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    15. John M. Maheu & Thomas McCurdy, 2003. "News Arrival, Jump Dynamics and Volatility Components for Individual Stock Returns," CIRANO Working Papers 2003s-38, CIRANO.
    16. Arısoy, Yakup Eser & Altay-Salih, Aslıhan & Akdeniz, Levent, 2015. "Aggregate volatility expectations and threshold CAPM," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 231-253.
    17. Dimitrios D. Thomakos & Michail S. Koubouros, 2005. "Realized Volatility and Asymmetries in the A.S.E. Returns," Finance 0504009, University Library of Munich, Germany, revised 17 Jan 2006.
    18. Eugenie Hol & Siem Jan Koopman, 2000. "Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility," Tinbergen Institute Discussion Papers 00-104/4, Tinbergen Institute.
    19. Sam Howison & David Lamper, 2001. "Trading volume in models of financial derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(2), pages 119-135.
    20. Michael W. Brandt & Qiang Kang, 2002. "On the Relationship Between the Conditional Mean and Volatility of Stock Returns: A Latent VAR Approach," NBER Working Papers 9056, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:7933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.