IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/32768.html
   My bibliography  Save this paper

Deep Learning for Economists

Author

Listed:
  • Melissa Dell

Abstract

Deep learning provides powerful methods to impute structured information from large-scale, unstructured text and image datasets. For example, economists might wish to detect the presence of economic activity in satellite images, or to measure the topics or entities mentioned in social media, the congressional record, or firm filings. This review introduces deep neural networks, covering methods such as classifiers, regression models, generative AI, and embedding models. Applications include classification, document digitization, record linkage, and methods for data exploration in massive scale text and image corpora. When suitable methods are used, deep learning models can be cheap to tune and can scale affordably to problems involving millions or billions of data points.. The review is accompanied by a companion website, EconDL, with user-friendly demo notebooks, software resources, and a knowledge base that provides technical details and additional applications.

Suggested Citation

  • Melissa Dell, 2024. "Deep Learning for Economists," NBER Working Papers 32768, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:32768
    Note: DAE DEV LS PE POL TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w32768.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuel Chang & Andrew Kennedy & Aaron Leonard & John List, 2024. "12 Best Practices for Leveraging Generative AI in Experimental Research," Artefactual Field Experiments 00796, The Field Experiments Website.
    2. Pablo Ottonello & Wenting Song & Sebastian Sotelo, 2024. "An Anatomy of Firms’ Political Speech," Staff Working Papers 24-37, Bank of Canada.

    More about this item

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:32768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.