IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/26329.html
   My bibliography  Save this paper

Cross-Sectional Dispersion of Risk in Trading Time

Author

Listed:
  • Torben G. Andersen
  • Martin Thyrsgaard
  • Viktor Todorov

Abstract

We study the temporal behavior of the cross-sectional distribution of assets' market exposure, or betas, using a large panel of high-frequency returns. The asymptotic setup has the sampling frequency of the returns increasing to infinity, while the time span of the data remains fixed, and the cross-sectional dimension is fixed or increasing. We derive a Central Limit Theorem (CLT) for the cross-sectional beta dispersion at a point in time, enabling us to test whether this quantity varies across the trading day. We further derive a functional CLT for the dispersion statistics, allowing us to test if the beta dispersion, as a function of time-of-day, changes across days. We extend this further by developing inference techniques for the entire cross-sectional beta distribution at fixed points in time. We demonstrate, for constituents of the S&P 500 index, that the beta dispersion is elevated at the market open, gradually declines over the trading day, and is less than half the original value by the market close. The intraday beta dispersion pattern also changes over time and evolves differently on macroeconomic announcement days. Importantly, we find that the intraday variation in market betas is a source of priced risk.

Suggested Citation

  • Torben G. Andersen & Martin Thyrsgaard & Viktor Todorov, 2019. "Cross-Sectional Dispersion of Risk in Trading Time," NBER Working Papers 26329, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:26329
    Note: AP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w26329.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets," Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
    2. Herman J. Bierens & Werner Ploberger, 1997. "Asymptotic Theory of Integrated Conditional Moment Tests," Econometrica, Econometric Society, vol. 65(5), pages 1129-1152, September.
    3. Per A. Mykland & Lan Zhang, 2017. "Assessment of Uncertainty in High Frequency Data: The Observed Asymptotic Variance," Econometrica, Econometric Society, vol. 85, pages 197-231, January.
    4. Li, Jia & Todorov, Viktor & Tauchen, George, 2017. "Adaptive estimation of continuous-time regression models using high-frequency data," Journal of Econometrics, Elsevier, vol. 200(1), pages 36-47.
    5. Lou, Dong & Polk, Christopher & Skouras, Spyros, 2019. "A tug of war: Overnight versus intraday expected returns," Journal of Financial Economics, Elsevier, vol. 134(1), pages 192-213.
    6. Nikolay Gospodinov & Raymond Kan & Cesare Robotti, 2012. "Robust inference in linear asset pricing models," FRB Atlanta Working Paper 2012-17, Federal Reserve Bank of Atlanta.
    7. Raymond Kan & Chu Zhang, 1999. "Two‐Pass Tests of Asset Pricing Models with Useless Factors," Journal of Finance, American Finance Association, vol. 54(1), pages 203-235, February.
    8. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    9. Bollerslev, Tim & Li, Sophia Zhengzi & Todorov, Viktor, 2016. "Roughing up beta: Continuous versus discontinuous betas and the cross section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 120(3), pages 464-490.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Martin Thyrsgaard & Viktor Todorov, 2021. "Recalcitrant betas: Intraday variation in the cross‐sectional dispersion of systematic risk," Quantitative Economics, Econometric Society, vol. 12(2), pages 647-682, May.
    2. Yuan Liao & Xiye Yang, 2017. "Uniform Inference for Characteristic Effects of Large Continuous-Time Linear Models," Papers 1711.04392, arXiv.org, revised Dec 2018.
    3. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    4. Yuan Liao & Xiye Yang, 2017. "Uniform Inference for Conditional Factor Models with Instrumental and Idiosyncratic Betas," Departmental Working Papers 201711, Rutgers University, Department of Economics.
    5. Cheng, Mingmian & Liao, Yuan & Yang, Xiye, 2023. "Uniform predictive inference for factor models with instrumental and idiosyncratic betas," Journal of Econometrics, Elsevier, vol. 237(2).
    6. Anatolyev, Stanislav & Mikusheva, Anna, 2022. "Factor models with many assets: Strong factors, weak factors, and the two-pass procedure," Journal of Econometrics, Elsevier, vol. 229(1), pages 103-126.
    7. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    8. Yang, Xiye, 2020. "Time-invariant restrictions of volatility functionals: Efficient estimation and specification tests," Journal of Econometrics, Elsevier, vol. 215(2), pages 486-516.
    9. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    10. Semenov, Andrei, 2021. "Measuring the stock's factor beta and identifying risk factors under market inefficiency," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 635-649.
    11. Fabian Hollstein & Marcel Prokopczuk & Chardin Wese Simen, 2020. "The Conditional Capital Asset Pricing Model Revisited: Evidence from High-Frequency Betas," Management Science, INFORMS, vol. 66(6), pages 2474-2494, June.
    12. Shafiqur Rahman & Matthew J. Schneider, 2019. "Tests of Alternative Asset Pricing Models Using Individual Security Returns and a New Multivariate F-Test," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-34, March.
    13. Dinesh Gajurel & Biplob Chowdhury, 2021. "Realized Volatility, Jump and Beta: evidence from Canadian Stock Market," Applied Economics, Taylor & Francis Journals, vol. 53(55), pages 6376-6397, November.
    14. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    15. Andersen, Torben G. & Riva, Raul & Thyrsgaard, Martin & Todorov, Viktor, 2023. "Intraday cross-sectional distributions of systematic risk," Journal of Econometrics, Elsevier, vol. 235(2), pages 1394-1418.
    16. Xyngis, Georgios, 2017. "Business-cycle variation in macroeconomic uncertainty and the cross-section of expected returns: Evidence for scale-dependent risks," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 43-65.
    17. Jiang, George J. & Zhu, Kevin X., 2017. "Information Shocks and Short-Term Market Underreaction," Journal of Financial Economics, Elsevier, vol. 124(1), pages 43-64.
    18. Paolo Zaffaroni, 2023. "Comment on: Identification Robust Testing of Risk Premia in Finite Samples," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 303-305.
    19. Li, Zeming & Sakkas, Athanasios & Urquhart, Andrew, 2022. "Intraday time series momentum: Global evidence and links to market characteristics," Journal of Financial Markets, Elsevier, vol. 57(C).
    20. Frank Kleibergen & Lingwei Kong & Zhaoguo Zhan, 2023. "Rejoinder on: Identification Robust Testing of Risk Premia in Finite Samples," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 311-315.

    More about this item

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:26329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.