IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/0060.html
   My bibliography  Save this paper

The Variances of Regression Coefficient Estimates Using Aggregate Data

Author

Listed:
  • Roy E. Welsch
  • Edwin Kuh

Abstract

This paper considers the effect of aggregation on the variance of parameter estimates for a linear regression model with random coefficients and an additive error term. Aggregate and microvariances are compared and measures of relative efficiency are introduced. Necessary conditions for efficient aggregation procedures are obtained from the Theil aggregation weights and from measures of synchronization related to the work of Grunfeld and Griliches.

Suggested Citation

  • Roy E. Welsch & Edwin Kuh, 1974. "The Variances of Regression Coefficient Estimates Using Aggregate Data," NBER Working Papers 0060, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:0060
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w0060.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edwin Kuh, 1974. "An Essay on Aggregation Theory and Practice," Palgrave Macmillan Books, in: Willy Sellekaerts (ed.), Econometrics and Economic Theory, chapter 3, pages 57-99, Palgrave Macmillan.
    2. Aigner, Dennis J & Goldfeld, Stephen M, 1974. "Estimation and Prediction from Aggregate Data when Aggregates are Measured More Accurately than Their Components," Econometrica, Econometric Society, vol. 42(1), pages 113-134, January.
    3. Swamy, P A V B & Arora, S S, 1972. "The Exact Finite Sample Properties of the Estimators of Coefficients in the Error Components Regression Models," Econometrica, Econometric Society, vol. 40(2), pages 261-275, March.
    4. Swamy, P A V B, 1970. "Efficient Inference in a Random Coefficient Regression Model," Econometrica, Econometric Society, vol. 38(2), pages 311-323, March.
    5. Aigner, D.J. & Goldfeld, S.M., 1974. "Estimation and prediction from aggregate data when aggregates are measured more accurately than their components," LIDAM Reprints CORE 190, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Feige, Edgar L & Watts, Harold W, 1972. "An Investigation of the Consequences of Partial Aggregation of Micro-Economic Data," Econometrica, Econometric Society, vol. 40(2), pages 343-360, March.
    7. Amemiya, Takeshi, 1971. "The Estimation of the Variances in a Variance-Components Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 12(1), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:jss:jstsof:27:i02 is not listed on IDEAS
    2. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    3. Edward E. Leamer, 1982. "Optimal Aggegation of Linear Systems," UCLA Economics Working Papers 240, UCLA Department of Economics.
    4. Baltagi, Badi H. & Blien, Uwe, 1998. "The German wage curve: evidence from the IAB employment sample," Economics Letters, Elsevier, vol. 61(2), pages 135-142, November.
    5. Monteforte, Libero, 2007. "Aggregation bias in macro models: Does it matter for the euro area?," Economic Modelling, Elsevier, vol. 24(2), pages 236-261, March.
    6. Dong Kim, 2012. "What is an oil shock? Panel data evidence," Empirical Economics, Springer, vol. 43(1), pages 121-143, August.
    7. Croissant, Yves & Millo, Giovanni, 2008. "Panel Data Econometrics in R: The plm Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i02).
    8. Ariel Pakes & Mark Schankerman, 1984. "An Exploration into the Determinants of Research Intensity," NBER Chapters, in: R&D, Patents, and Productivity, pages 209-232, National Bureau of Economic Research, Inc.
    9. Badi H. Baltagi, 1987. "On Estimating from a More General Time-Series Cum Cross-Section Data Structure," The American Economist, Sage Publications, vol. 31(2), pages 69-71, October.
    10. Subhash C. Sharma & Anil K. Bera, 2021. "Estimation of Random Components and Prediction in One and Two-Way Error Component Regression Models," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 419-441, December.
    11. Alain Pirotte & Jean-Loup Madre, 2011. "Determinants of Urban Sprawl in France," Urban Studies, Urban Studies Journal Limited, vol. 48(13), pages 2865-2886, October.
    12. M. Faruk Aydin & Ugur Ciplak & Eray M. Yucel, 2004. "Export Supply and Import Demand Models for the Turkish Economy," Working Papers 0409, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    13. Giacomo Sbrana, 2007. "Testing for Model Selection in Predicting Aggregate Variables," Giornale degli Economisti, GDE (Giornale degli Economisti e Annali di Economia), Bocconi University, vol. 66(1), pages 3-28, March.
    14. Shingal, Anirudh, 2007. "Examining responsiveness of India’s trade flows to exchange rate movements," MPRA Paper 32820, University Library of Munich, Germany, revised 18 Mar 2010.
    15. Baltagi, Badi H. & Pirotte, Alain, 2010. "Panel data inference under spatial dependence," Economic Modelling, Elsevier, vol. 27(6), pages 1368-1381, November.
    16. Cobb, Marcus P A, 2017. "Forecasting Economic Aggregates Using Dynamic Component Grouping," MPRA Paper 81585, University Library of Munich, Germany.
    17. Marcus Cobb, 2009. "Forecasting Chilean Inflation From Disaggregate Components," Working Papers Central Bank of Chile 545, Central Bank of Chile.
    18. Carson, Richard T. & Cenesizoglu, Tolga & Parker, Roger, 2011. "Forecasting (aggregate) demand for US commercial air travel," International Journal of Forecasting, Elsevier, vol. 27(3), pages 923-941.
    19. Marius C. O. Amba, 2021. "Simultaneous Equations with Three Way Error Components," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(3), pages 583-596, September.
    20. Jayasooriya, Sujith, 2021. "Impact of Agricultural Factors on Carbon Footprints for GHG Emission Policies in Asia," MPRA Paper 109790, University Library of Munich, Germany.
    21. Bernardina Algieri, 2004. "Price and Income Elasticities of Russian Exports," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 1(2), pages 175-193, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:0060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.