IDEAS home Printed from https://ideas.repec.org/p/nbr/nberte/0022.html
   My bibliography  Save this paper

Using Information on the Moments of Disturbances to Increase the Efficiency of Estimation

Author

Listed:
  • Thomas E. MaCurdy

Abstract

Econometric analyses of treatment response commonly use instrumental variable (IV) assumptions to identify treatment effects. Yet the credibility of IV assumptions is often a matter of considerable disagreement, with much debate about whether some covariate is or is not a 'valid instrument' in an application of interest. There is therefore good reason to consider weaker but more credible assumptions. To this end, we introduce monotone instrumental variable (MIV) assumptions. A particularly interesting special case of an MIV assumption is monotone treatment selection (MTS). IV and MIV assumptions may be imposed alone or in combination with other assumptions. We study the identifying power of MIV assumptions in three informational settings: MIV alone; MIV combined with the classical linear response assumption; MIV combined with the monotone treatment response (MTR) assumption. We apply the results to the problem of inference on the returns to schooling. We analyze wage data reported by white male respondents to the National Longitudinal Survey of Youth (NLSY) and use the respondent's AFQT score as an MIV. We find that this MIV assumption has little identifying power when imposed alone. However, combining the MIV assumption with the MTR and MTS assumptions yields fairly tight bounds on two distinct measures of the returns to schooling.

Suggested Citation

  • Thomas E. MaCurdy, 1982. "Using Information on the Moments of Disturbances to Increase the Efficiency of Estimation," NBER Technical Working Papers 0022, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberte:0022
    Note: LS
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/t0022.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Amemiya, Takeshi, 1974. "The nonlinear two-stage least-squares estimator," Journal of Econometrics, Elsevier, vol. 2(2), pages 105-110, July.
    3. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    4. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lemieux, Thomas, 1998. "Estimating the Effects of Unions on Wage Inequality in a Panel Data Model with Comparative Advantage and Nonrandom Selection," Journal of Labor Economics, University of Chicago Press, vol. 16(2), pages 261-291, April.
    2. Im, Kyung So & Schmidt, Peter, 2008. "More efficient estimation under non-normality when higher moments do not depend on the regressors, using residual augmented least squares," Journal of Econometrics, Elsevier, vol. 144(1), pages 219-233, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2003. "Instrumental variables and GMM: Estimation and testing," Stata Journal, StataCorp LP, vol. 3(1), pages 1-31, March.
    2. Ramdan Dridi, 2000. "Simulated Asymptotic Least Squares Theory," STICERD - Econometrics Paper Series 396, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    3. Dridi, Ramdan, 2000. "Simulated asymptotic least squares theory," LSE Research Online Documents on Economics 6861, London School of Economics and Political Science, LSE Library.
    4. So Im, Kyung, 1998. "Efficient estimation with grouped data," Economics Letters, Elsevier, vol. 59(2), pages 169-174, May.
    5. Yenn-Ru Chen & Carl R. Chen & Chih-Kang Chu, 2014. "The Effect of Executive Stock Options on Corporate Innovative Activities," Financial Management, Financial Management Association International, vol. 43(2), pages 271-290, June.
    6. Zhang, Yinjunjie & Palma, Marco A., 2018. "Revisiting the Effects of Sugar Tax on Demand Elasticities - Evidence from the BLP Demand Model," 2018 Annual Meeting, August 5-7, Washington, D.C. 273978, Agricultural and Applied Economics Association.
    7. Deodat E. Adenutsi & Meshach J. Aziakpono & Matthew K. Ocran, 2011. "The Changing Impact Of Macroeconomic Environment On Remittance Inflows In Sub-Saharan Africa," Journal of Academic Research in Economics, Spiru Haret University, Faculty of Accounting and Financial Management Constanta, vol. 3(2 (July)), pages 136-167.
    8. Panagiotis T. Konstantinou, 2005. "The Expectations Hypothesis of the Term Structure : A Look at the Polish Interbank Market," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 41(3), pages 70-91, May.
    9. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    10. Jacques Mairesse & Bronwyn H. Hall & Benoît Mulkay, 1999. "Firm-Level Investment in France and the United States: An Exploration of What We Have Learned in Twenty Years," Annals of Economics and Statistics, GENES, issue 55-56, pages 27-67.
    11. Hamilton, James D. & Wu, Jing Cynthia, 2012. "Identification and estimation of Gaussian affine term structure models," Journal of Econometrics, Elsevier, vol. 168(2), pages 315-331.
    12. Amengual, Dante & Sentana, Enrique, 2010. "A comparison of mean-variance efficiency tests," Journal of Econometrics, Elsevier, vol. 154(1), pages 16-34, January.
    13. Matos, Paulo Rogério Faustino & Costa, Carlos Eugênio da & Issler, João Victor, 2007. "The forward- and the equity-premium puzzles: two symptoms of the same illness?," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 649, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    14. Boswijk, H. Peter & Franses, Philip Hans & van Dijk, Dick, 2010. "Cointegration in a historical perspective," Journal of Econometrics, Elsevier, vol. 158(1), pages 156-159, September.
    15. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2003. "Empirical likelihood estimation and consistent tests with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 117(1), pages 55-93, November.
    16. Maio, Paulo & Philip, Dennis, 2015. "Macro variables and the components of stock returns," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 287-308.
    17. Chirinko, Robert S. & Wilson, Daniel J., 2008. "State investment tax incentives: A zero-sum game?," Journal of Public Economics, Elsevier, vol. 92(12), pages 2362-2384, December.
    18. Guo, Hui, 2006. "Time-varying risk premia and the cross section of stock returns," Journal of Banking & Finance, Elsevier, vol. 30(7), pages 2087-2107, July.
    19. Larry A. Sjaastad & Meher Manzur, 2003. "Import Protection, Capital Inflows, and Real Exchange Rate Dynamics," Journal of Applied Economics, Universidad del CEMA, vol. 6, pages 177-203, May.
    20. Timothy Richards, 2007. "A nested logit model of strategic promotion," Quantitative Marketing and Economics (QME), Springer, vol. 5(1), pages 63-91, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.