IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2023-7.html
   My bibliography  Save this paper

Does Climate Sensitivity Differ Across Regions?

Author

Listed:
  • Heather Anderson
  • Jiti Gao
  • Farshid Vahid
  • Wei Wei
  • Yang Yang

Abstract

Global mean surface temperature has been increasing in response to growing greenhouse gas concentrations (IPCC, 2021). While Earth is getting warmer overall, regions that differ in local geographical features experience unequal increases in temperature. In this paper, we develop a dynamic varying-coefficient panel data model and use it to measure regional climate sensitivity, defined as the increase in temperature in that region, following a doubling of CO2 concentration. The inference method proposed in this paper is capable of accommodating heterogeneous co-integrating relationships between global and local variables, and it allows comoving climate time series to possess both stochastic and deterministic trending components. Using observational data of mean surface temperatures, solar radiation, and carbon dioxide concentrations between 1959-2017, our model provides an estimate of a 3.7C increase for average climate sensitivity. Moreover, our estimates indicate that high-latitude regions in the Northern Hemisphere are most vulnerable to global warming.

Suggested Citation

  • Heather Anderson & Jiti Gao & Farshid Vahid & Wei Wei & Yang Yang, 2023. "Does Climate Sensitivity Differ Across Regions?," Monash Econometrics and Business Statistics Working Papers 7/23, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2023-7
    as

    Download full text from publisher

    File URL: https://www.monash.edu/business/ebs/research/publications/ebs/2023/wp07-2023.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Joon Y. & Phillips, Peter C.B., 1989. "Statistical Inference in Regressions with Integrated Processes: Part 2," Econometric Theory, Cambridge University Press, vol. 5(1), pages 95-131, April.
    2. Chaohua Dong & Jiti Gao & Bin Peng, 2021. "Varying-Coefficient Panel Data Models With Nonstationarity and Partially Observed Factor Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 700-711, July.
    3. Feng, Guohua & Gao, Jiti & Peng, Bin & Zhang, Xiaohui, 2017. "A varying-coefficient panel data model with fixed effects: Theory and an application to US commercial banks," Journal of Econometrics, Elsevier, vol. 196(1), pages 68-82.
    4. Sun, Yiguo & Cai, Zongwu & Li, Qi, 2016. "A Consistent Nonparametric Test On Semiparametric Smooth Coefficient Models With Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 32(4), pages 988-1022, August.
    5. Robert Kaufmann & Heikki Kauppi & Michael Mann & James Stock, 2013. "Does temperature contain a stochastic trend: linking statistical results to physical mechanisms," Climatic Change, Springer, vol. 118(3), pages 729-743, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Peng & Liangjun Su & Joakim Westerlund & Yanrong Yang, 2021. "Interactive Effects Panel Data Models with General Factors and Regressors," Papers 2111.11506, arXiv.org.
    2. Peter C. B. Phillips, 2020. "Dynamic Panel Modeling of Climate Change," Econometrics, MDPI, vol. 8(3), pages 1-28, July.
    3. Phillips, Peter C.B. & Leirvik, Thomas & Storelvmo, Trude, 2020. "Econometric estimates of Earth’s transient climate sensitivity," Journal of Econometrics, Elsevier, vol. 214(1), pages 6-32.
    4. Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    5. Entorf, Horst, 1997. "Random walks with drifts: Nonsense regression and spurious fixed-effect estimation," Journal of Econometrics, Elsevier, vol. 80(2), pages 287-296, October.
    6. Carlos Vieira, 2004. "The Deficit?Interest Rate Connection: an empirical assessment of the EU," Economics Working Papers 5_2004, University of Évora, Department of Economics (Portugal).
    7. Claudio Morana & Giacomo Sbrana, 2017. "Temperature Anomalies, Radiative Forcing and ENSO," Working Papers 2017.09, Fondazione Eni Enrico Mattei.
    8. Westerlund, Joakim, 2014. "On the choice of test for a unit root when the errors are conditionally heteroskedastic," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 40-53.
    9. Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
    10. Hurlin, Christophe & Minea, Alexandru, 2013. "Is public capital really productive? A methodological reappraisal," European Journal of Operational Research, Elsevier, vol. 228(1), pages 122-130.
    11. Nyakabawo, Wendy & Miller, Stephen M. & Balcilar, Mehmet & Das, Sonali & Gupta, Rangan, 2015. "Temporal causality between house prices and output in the US: A bootstrap rolling-window approach," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 55-73.
    12. Beenstock, Michael & Reingewertz, Yaniv & Paldor, Nathan, 2016. "Testing the historic tracking of climate models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1234-1246.
    13. Claudio, Morana & Giacomo, Sbrana, 2017. "Some Financial Implications of Global Warming: An Empirical Assessment," Working Papers 377, University of Milano-Bicocca, Department of Economics, revised 25 Dec 2017.
    14. Ying Wang & Peter C. B. Phillips & Yundong Tu, 2024. "Limit Theory and Inference in Non-cointegrated Functional Coefficient Regression," Cowles Foundation Discussion Papers 2399, Cowles Foundation for Research in Economics, Yale University.
    15. Blangiewicz, Maria & Charemza, Wojciech W., 1999. "East European Economic Reform: Some Simulations on a Structural Vector Autoregressive Model," Journal of Policy Modeling, Elsevier, vol. 21(5), pages 535-557, September.
    16. Campos, Julia & Ericsson, Neil R. & Hendry, David F., 1996. "Cointegration tests in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 70(1), pages 187-220, January.
    17. Simon Freyaldenhoven & Christian Hansen & Jorge Perez Perez & Jesse Shapiro, 2021. "Visualization, Identification, and stimation in the Linear Panel Event-Study Design," Working Papers 21-44, Federal Reserve Bank of Philadelphia.
    18. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    19. Feng, Guohua & Gao, Jiti & Peng, Bin, 2022. "An integrated panel data approach to modelling economic growth," Journal of Econometrics, Elsevier, vol. 228(2), pages 379-397.
    20. Neeraj, & Panigrahi, Prasanta K., 2017. "Causality and correlations between BSE and NYSE indexes: A Janus faced relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 284-313.

    More about this item

    Keywords

    climate sensitivity; dynamic panel; varying-coefficient model; cointegration;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2023-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.